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10.1 Introduction

A number of problems in science and technology can be formulated 
into differential equations. The analytical methods of solving differential 
equations are applicable only to a limited class of equations. Quite often 
differential equations appearing in physical problems do not belong to any 
of these familiar types and one is obliged to resort to numerical methods. 
These methods are of even greater importance when we realize that com-
puting machines are now readily available which reduce numerical work 
considerably.

Solution of a differential equation. The solution of an ordinary differen-
tial equation means finding an explicit expression for y in terms of a finite 
number of elementary functions of x. Such a solution of a differential equa-
tion is known as the closed or finite form of solution. In the absence of such 
a solution, we have recourse to numerical methods of solution.

Let us consider the first order differential equation

 dy/dx  f(x, y), given y(x0)  y0 (1)
to study the various numerical methods of solving such equations. In most 
of these methods, we replace the differential equation by a difference equa-
tion and then solve it. These methods yield solutions either as a power se-
ries in x from which the values of y can be found by direct substitution, or 
a set of values of x and y. The methods of Picard and Taylor series belong 
to the former class of solutions. In these methods, y in (1) is approximated 
by a truncated series, each term of which is a function of x. The information 
about the curve at one point is utilized and the solution is not iterated. As 
such, these are referred to as single-step methods.

The methods of Euler, Runge-Kutta, Milne, Adams-Bashforth, etc. be-
long to the latter class of solutions. In these methods, the next point on the 
curve is evaluated in short steps ahead, by performing iterations until suf-
ficient accuracy is achieved. As such, these methods are called step-by-step 
methods.

Euler and Runga-Kutta methods are used for computing y over a lim-
ited range of x- values whereas Milne and Adams methods may be applied 
for finding y over a wider range of x-values. Therefore Milne and Adams 
methods require starting values which are found by Picard’s Taylor series 
or Runge-Kutta methods.
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Initial and boundary conditions. An ordinary differential equation 
of the nth order is of the form

 2 2, , / , / , ),( / 0n nF x y dy dx d y dx d y dx   (2)
Its general solution contains n arbitrary constants and is of the form

 1 2, , ), ,( , 0nx y c c c   (3)
To obtain its particular solution, n conditions must be given so that the 

constants c1, c2 , cn can be determined.

If these conditions are prescribed at one point only (say:x0), then the dif-
ferential equation together with the conditions constitute an initial value 
problem of the nth order.

If the conditions are prescribed at two or more points, then the problem 
is termed as boundary value problem.

In this chapter, we shall first describe methods for solving initial value 
problems and then explain the finite difference method and shooting 
method for solving boundary value problems.

10.2 Picard’s Method

Consider the first order equation ( , )
dy

f x y
dx
  (1)

It is required to find that particular solution of (1) which assumes the 
value y0 when x  x0. Integrating (1) between limits, we get 

 
˘

0( , )  or ( , )
˘

˘
dy f x y dx y y f x y dx      (2)

This is an integral equation equivalent to (1), for it contains the un-
known y under the integral sign.

As a first approximation y1 to the solution, we put y  y0 in f(x, y) and 
integrate (2), giving

 
0

1 0 0( , )
x

x
y y f x y dx 

For a second approximation y2, we put y  y1 in f(x, y) and integrate 
(2), giving

 
0

˘ ˘
x

x
y y f x y dx 
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Similarly, a third approximation is

 
0

3 0 2( , )
x

x
y y f x y dx 

Continuing this process, we obtain y4, y5,  yn where

 
0

0 1( , )
x

n nx
y y f x y dx 

Hence this method gives a sequence of approximations y1, y2, y3  
each giving a better result than the preceding one.

Obs. Picard’s method is of considerable theoretical value, but 
can be applied only to a limited class of equations in which the 
successive integrations can be performed easily. The method can 
be extended to simultaneous equations and equations of higher 
order (See Sections 10.11 and 10.12).

EXAMPLE 10.1

Using Picard’s process of successive approximations, obtain a solution 
up to the fifth approximation of the equation dy/dx  y  x, such that 
y  1 when x  0. Check your answer by finding the exact particular solution.

Solution:

(i) We have 
0

1 ( )
x

x
y x y dx  

First approximation. Put y  1 in y  x, giving

 
0

2
1 1 (1 ) 1 /2

x

x
y x dx x x     

Second approximation. Put y  1  x  x2/2 in y  x, giving

 
0

2 2 3
1 1 (1 /2) 1 /6

x

x
y x x dx x x x       

Third approximation. Put y 1  x  x2  x3/6 in y  x, giving

 
0

3 4
2 3 2

3 1 (1 /6) 1 2
3 24

x

x

x x
y x x x dx x x         

Fourth approximation. Put y  y3 in y  x, giving

 
3 4

2
4 0

3 4 5
2

1 1 2
3 24

1
3 12 120

x x x
y x x dx

x x x
x x

 
      
 

     



NOTE
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Fifth approximation, Put y y4 in y  x, giving

 
3 4 5

2
5 0

3 4 5 6
2

1 1 2
3 12 120

1
3 12 60 720

x x x x
y x x dx

x x x x
x x

 
       
 

      

  (1)

(ii) Given equation

 
dy

y x
dx
   is a Leibnitzs linear in x

Its, I.F. being ex the solution is

 
 

x x

x x x x

ye xe dx c

xe e dx c xe e c

 

   

 

      




      1xy ce x  

Since y 1, when x 0,      c 2.

Thus the desired particular solution is

                                         2 1xy e x    (2)

Or using the series: 
2 3 4

1
2! 3! 4!

x x x x
e x     

We get                                 
3 4 5 6

21
3 12 60 360
x x x x

y x x          (3)

Comparing (1) and (3), it is clear that (1), approximates to the exact 
particular solution (3) upto the term in x5.

Obs. At x  1, the fourth approximation y4  3.433 and the fifth 
approximation y5  3.434 whereas the exact value is 3.44.

EXAMPLE 10.2

Find the value of y for x  0.1 by Picard’s method, given that

 , (0) 1.
dy y x

y
dx y x


 


Solution:

We have 
0

1
x y x

y dx
y x


 


NOTE
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First approximation. Put y 1 in the integrand, giving

 
1 0 0

0

2
1 1 1

1

1 2 log(1 ) 1 2 log(1 )

x x

x

y x
y dx dx

y x x

x x x x

  
      

  

          

 

Second approximation. Put y 1  x  2 log(1 + x)  in the integrand, 
giving

 
2 0

0

1 2 log(1 )
1

1 2 log(1 )

2
1 1

1 2 log(1 )

x

x

x x x
y dx

x x x

x
dx

x

   
 

   

 
   

  




which is very difficult to integrate.

Hence we use the first approximation and taking x  0.1 in (i) we obtain

 y(0.1)  1 – (0.1)  2 log 1.1  0.9828.

10.3 Taylor’s Series Method

Consider the first order equation ( , )
dy

f x y
dx
  (1)

Differentiating (1), we have 
2

2

d y dyf f
x y dxdx

 
 
 

 i.e. x yy f f f    (2)

Differentiating this successively, we can get , ivy y  etc. Putting x  x0 
and y  0, the

Values of 0 0 0( ) ,( ) ,( )y y y   can be obtained.  Hence the Taylor’s series

 
2 3

0 0
0 0 0 0 0

( ) ( )
( )( ) ( ) ( ) ...

2! 3!
x x x x

y y x x y y y
 

         (3)

gives the values of y for every value of x for which (3) converges.

On finding the value y1 for x  xi from (3), y, y etc. can be evaluated 
at x  x1 by means of (1), (2) etc. Then y can be expanded about x  x1. In 
this way, the solution can be extended beyond the range of convergence of 
series (3).
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Obs. This is a single step method and works well so long as 
the successive derivatives can be calculated easily. If (x, y) is 
somewhat complicated and the calculation of higher order 
derivatives becomes tedious, then Taylor’s method cannot 
be used gainfully. This is the main drawback of this method 
and therefore, has little application for computer programs. 
However, it is useful for finding starting values for the 
application of powerful methods like Runga-Kutta, Milne and 
Adams- Bashforth which will be described in the subsequent 
sections.

EXAMPLE 10.3

Solve y  x  y, y(0)  1 by Taylor’s series method. Hence find the val-
ues of y at x  0.1 and x  0.2.

Solution:

Differentiating successively, we get

   y  x  y   y(0)  1 [ y(0)  1]

  y  1  y  y(0)  2 

 y  y y(0)  2 

 y  y y(0)  2, etc. 

Taylor’s series is

 
2 3

0 0
0 0 0 0 0

( ) ( )
( )( ) ( ) ( )

2! 3!
x x x x

y y x x y y y
 

       

Here x0  0, y0  1

          
2 3 4( ) ( )

1 1 (2) (2) (4)
2 3! 4!
x x x

y x     

Thus     
   3 4

2 0.1 0.1
0.1 1 0.1 0.1

3! 4!
1.1103

y     





and     
   3 4

2 0.2 0.2
0.2 1 0.2 0.2

3 6
1.2427

y      





NOTE
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EXAMPLE 10.4

Find by Taylor’s series method, the values of y at x  0.1 and x  0.2 to 
five places of decimals from dy/dx  x2y – 1, y(0)  1.

Solution:

Differentiating successively, we get
   y x2y – 1,    (y)0  – 1 [ y(0)  1]

  y 2xy  x2y,   (y)0  0 

 y 2y  4xy  x2y,  (y)0  2 

  yiv  6y  6xy  x2y,   (yiv)0  – 6, etc. 
Putting these values in the Taylor’s series, we have

 
 

2 3 4

3 4

( ) ( )
1 1 (0) (2) ( 6)

2 3! 4!

1
3 4

x x x
y x

x x
x

       

    





Hence y(0.1)  0.90033 and y(0.21)  0.80227 

EXAMPLE 10.5

Employ Taylor’s method to obtain approximate value of y at x  0.2 for 
the differential equation dy/dx  2y  3ex, y(0)  0. Compare the numerical 
solution obtained with the exact solution.

Solution:

(a) We have y  2y  3ex; y(0)  2y(0)  3e0  3.

Differentiating successively and substituting x  0, y  0 we get

  y  2y  3ex,  y(0)  2y(0)  3  9

 y  2y  3ex, y(0)  2y(0)   3  21

  yiv  2y  3ex,  yiv(0)  2y(0)  3  45 etc. 

Putting these values in the Taylor’s series, we have

 

2 3 4

2 3 4

2 3 4

( ) (0) (0) (0) (0) (0)
2! 3! 4!

9 21 45
0 3

2 6 24
9 21 15

3
2 6 8

ivx x x
y x y xy y y y

x x x x

x x x x
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Hence 2 3 4(0.2) 3(0.2) 4.5(0.2) 3.5(0.2) 1.875(0.2) 0.8110y        (i)

(b) Now 2 3 xdy
y e

dx
   is a Leibnitz’s linear in x

Its I.F. being  e–2x, the solution is

 –2 . 2  – 23 –3   or    –3x x x x x xye e e dx c e c y e ce     
Since y  0 when x  0,        c  3.

Thus the exact solution is y  3(e2x – ex)

When x  0.2, y  3(e0.4 – e0.2)  0.8112 (ii)
Comparing (i) and (ii), it is clear that (i) approximates to the exact value 

up to three decimal places

EXAMPLE 10.6

Solve by Taylor series method of third order the equation
3 2

,x

dy x xy
dx e


  

y(0)  1 for y at x  0.1, x  0.2 and x  0.3

Solution:

We have         3 2 – ; 0 0xy x xy e y  

Differentiating  successively and  substituting x  0, y  1.

                
 

3 2 2 2–

3 2 2 2 –

– 3 .2 .

– – 3 2 ; 

( )( ) ( )

( )     0 1

xx

x

y x xy e x y x y y e

x xy x y xyy e y

     

     

       

 

3 2 2 2 –

2 2

2 –  

– – 3 2 –

–3 – .2 . 6 2

( )( )

{ ( )

[ ( )]}2 0 –2

x

x

y x xy x y xyy e

x y x y y x yy

yy x y yy e y

    

    

      

Substituting these values in the Taylor’s series, we have

 

2 3

2 3

2 3

( ) (0) (0) (0) (0)
2! 3!

1 (0) (1) ( 2)
2 6

1
2 6

x x
y x y xy y y

x x
x

x x
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Hence  

 

 

2 3

2 3

2 3

1 1
0.1 1  0.1   0.1  1.005

2 3
1 1

0.2 1 0.2  0.2  1.017
2 3
1 1

0.3 1 0.3

( ) ( )

( ) ( )

( )   0.3  1.036
2 3

( )

y

y

y

   

   

   

 

 

EXAMPLE 10.7

Solve by Taylor’s series method the equation log( )
dy

xy
dx
  for y(1.1) 

and y(1.2), given y(1)  2.

Solution:

We have y  log x  log y; y(1)  log 2 

Differentiating w.r.t., x and substituting x  1, y  2, we get

 
1 1 1

1 log 2
2

y y y
x y

     

 

 

2 2

2

1 1 1
;

1 1 1
1 1 log 2 log 2

2 2 4

y y y y
yx y

y

 
        
 

 
    

 

 

Substituting these values in the Taylor’s series about s  1, we have

 

 
   

 

2 3
'

2

23

1 1
( ) (1) 1 (1) (1) (1)

2! 3!
1 1

2 ( 1)log 2 ( 1) 1 log 2
2 2

1 1 1 1
( 1) log 2 log 2

6 2 4 4

x x
y x y x y y y

x x

x

 
      

 
      

 

 
      



  
2 3

2(0.1) 1 (0.1) 1 1 1
(1.1) 2 (0.1) log 2 1 log 2 log 2 log 2

2 2 6 2 4 4
2.036

y
   

            



  
2 3

2(0.2) 1 (0.2) 1 1 1
(1.2) 2 (0.2) log 2 1 log 2 log 2 log 2

2 2 6 2 4 4
2.081

y
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Exercises 10.1

1. Using Picard’s method, solve dy/dx  – xy with x0  0, y0  1 up to the 
third approximation.

2. Employ Picard ’s  method to obtain, correct to four places of decimals 
the, solution of the differential equation dy/dx  x2  y2 for x  0.4, given 
that y  0 when x  0.

3. Obtain Picard’s second approximate solution of the initial value problem
 y x2/(y2  1), y(0)0.

4. Find an approximate value of y when x  0.1, if dy/dx x – y2 and y 1 
at x  0, using
(a) Picard’s method  (b) Taylor’s series.

5. Solve y  x  y given y(1)  0. Find y(1.1) and y(1.2) by Taylor’s meth-
od. Compare the result with its exact value.

6. Using Taylor’s series method, compute y(0.2) to three places of deci-

mals from 1 2
dy

xy
dx
   given that y(0) 0.

7. Evaluate y(0.1) correct to six places of decimals by Taylor’s series 
method if y (x) satisfies
 y  xy  1, y(0) 1.

8. Solve y  y2  x, y(0) 1 using Taylor’s series method and compute 
y(0.1) and y(0.2).

9. Evaluate y(0.1) correct to four decimal places using Taylor’s series 
methods if dy/dx  x2  y2, y(0)  1.

10. Using Taylor series method, find y(0.1) correct to three decimal places 
given that dy/dx  e x– y2, y(0)  1

10.4 Euler’s Method

Consider the equation ˘
dy

˘
dx
  (1)

given that y(x0)  y0.Its curve of solution through P(x0, y0)is shown dotted 
in Figure.10.1. Now we have to find the ordinate of any other point Q on 
this curve.



0
L L2 M

X

x0 x0+ h x0+ 2h x0+ nh

y0

R1

R2

Rn

P

P1

Q1

P2

Pn

Q
Y

True value of y

Error

Approx. value of y

L1

θ

FIGURE 10.1

Let us divide LM into n sub-intervals each of width h at L1, L2 so that 
h is quite small

In the interval LL1, we approximate the curve by the tangent at P. If the 
ordinate through L1 meets this tangent in P1(x0  h, y1), then

 y1  L1P1  LP  R1P1  y0  PR1 tan 

 0 0 0 0 ( ),
p

dy
y h y hf x y

dx

 
    

 

Let P1Q1 be the curve of solution of (1) through P1 and let its tangent at 
P1 meet the ordinate through L2 in P2(x0  2h, y2). Then

 y2  y1  hf(x0  h, y1) (1)
Repeating this process n times, we finally reach on an approximation 

MPn of MQ given by

 –1 0 –1( )1 ,n n ny y hf x n h y   

This is Euler’s method of finding an approximate solution of (1).

Obs. In Euler’s method, we approximate the curve of solution 
by the tangent in each interval, i.e., by a sequence of short lines. 
Unless h is small, the error is bound to be quite significant. This 
sequence of lines may also deviate considerably from the curve 
of solution. As such, the method is very slow and hence there is 
a modification of this method which is given in the next section.

NOTE
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EXAMPLE 10.8

Using Euler’s method, find an approximate value of y corresponding to 
x  1, given that dy/dx  x  y and y  1 when x  0.

Solution:

We take n  10 and h  0.1 which is sufficiently small. The various cal-
culations are arranged as follows:

x y x  y  dy/dx Old y  0.1 (dy/dx)  new y
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.00
1.10
1.22
1.36
1.53
1.72
1.94
2.19
2.48
2.81
3.18

1.00
1.20
1.42
1.66
1.93
2.22
2.54
2.89
3.29
3.71

1.00  0.1 (1.00)  1.10
1.10  0.1 (1.20)  1.22
1.22  0.1 (1.42)  1.36
1.36  0.1 (1.66)  1.53
1.53  0.1 (1.93)  1.72
1.72  0.1 (2.22)  1.94
1.94  0.1 (2.54)  2.19
2.19  0.1 (2.89)  2.48
2.48  0.1 (3.29)  2.81
2.81  0.1 (3.71)  3.18

Thus the required approximate value of y  3.18.

Obs. In Example 10.1(Obs.), we obtained the true values of y 
from its exact solution to be 3.44 where as by Euler’s method 
y  3.18 and by Picard’s method y  3.434. In the above 
solution, had we chosen n  20, the accuracy would have been 
considerably increased but at the expense of double the labor of 
computation. Euler’s method is no doubt very simple but cannot 
be considered as one of the best.

EXAMPLE 10.9

Given dy y x
dx y x





with initial condition y  1 at x  0; find y for x  0.1 

by Euler’s method.

Solution:

We divide the interval (0, 0.1) in to five steps, i.e., we take n  5 and 
h 0.02. The various calculations are arranged as follows:

NOTE
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x y dy/dx Oldy  0.02 (dy/dx)  new y
0.00
0.02
0.04
0.06
0.08
0.10

1.0000
1.0200
1.0392
1.0577
1.0756
1.0928

1.0000
0.9615
0.926
0.893
0.862

1.0000  0.02(1.0000)  1.0200
1.0200  0.02(0.9615)  1.0392
1.0392  0.02(0.926)  1.0577
1.0577  0.02(0.893)  1.0756
1.0756  0.02(0.862)  1.0928

Hence the required approximate value of y  1.0928.

10.5 Modified Euler’s Method

In Euler’s method, the curve of solution in the interval LL1 is approxi-
mated by the tangent at P (Figure 10.1) such that at P1, we have

 y1  y0  h f(x0, y0) (1)
Then the slope of the curve of solution through P1

 [i.e., (dy/dx)P1  f(x0  h, y1)]

is computed and the tangent at P1 to P1Q1 is drawn meeting the ordinate 
through L2 in

 P2(x0  2h, y2).

Now we find a better approximation (1)
1y  of y(x0  h) by taking the slope 

of the curve as the mean of the slopes of the tangents at P and P1, i.e.,

 (1)
1 0 0 0 0 1[ ( , ) ( , )]

2
h

y y f x y f x h y   

As the slope of the tangent at P1 is not known, we take y1 as found in (1) 
by Euler’s method and insert it on R.H.S. of (2) to obtain the first modified 
value y1(1) 

Again (2) is applied and we find a still better value y1(2) corresponding 
to L1 as

  
(2) (1)
1 0 0 0 0 1[ ( , ) ( , )]

2
h

y y f x y f x h y   

We repeat this step, until two consecutive values of y agree. This is then 
taken as the starting point for the next interval L1L2.

Once y1 is obtained to a desired degree of accuracy, y corresponding to 
L2 is found from (1).

 y2 = y1 + hf(x0 + h, y1)

and a better approximation (1)
2y is obtained from (2)

 (1)
2 1 0 1 0 2[ ( , ) ( 2 , )]

2
h

y y f x h y f x h y    
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We repeat this step until y2 becomes stationary. Then we proceed to calcu-
late y3 as above and so on.

This is the modified Euler’s method which gives great improvement in 
accuracy over the original method.

EXAMPLE 10.10

Using modified Euler’s method, find an approximate value of y when 
x  0.3, given that dy/dx  x  y and y  1 when x  0.

Solution:

The various calculations are arranged as follows taking h  0.1:

x x  y  y Mean slope Old y  0.1 (mean slope)  new y

0.0 0  1 — 1.00  0.1 (1.00)  1.10

0.1 0.1  1.1 1
2 ( )1 1.2 1.00  0.1 (1.1)  1.11

0.1 0.1  1.11 1
2 1 1( ).21 1.00  0.1 (1.105)  1.1105

0.1 0.1  1.1105 1
2 1 1.( )2105 1.00  0.1 (1.1052)  1.1105

Since the last two values are equal, we take y(0.1)  1.1105.

0.1 1.2105 — 1.1105  0.1 (1.2105)  1.2316

0.2 0.2  1.2316 1
2 1.12105 1.4( )316 1.1105  0.1 (1.3211)  1.2426

0.2 0.2  1.2426 1
2 1.2105 1.4( )426 1.1105  0.1 (1.3266)  1.2432

0.2 0.2  1.2432 1
2 1.2105 1.4( )432 1.1105  0.1 (1.3268)  1.2432

Since the last two values are equal, we take y(0.2)  1.2432.

0.2 1.4432 — 1.2432  0.1 (1.4432)  1.3875

0.3 0.3  1.3875 1
2 1.4432 1.6( )875 1.2432  0.1 (1.5654)  1.3997

0.3 0.3  1.3997 1
2 1.4432 1.6( )997 1.2432  0.1 (1.5715)  1.4003

0.3 0.3  1.4003 1
2 1.4432 1.7( )003 1.2432  0.1 (1.5718)  1.4004

0.3 0.3  1.4004 1
2 1.4432 1.7( )004 1.2432  0.1 (1.5718)  1.4004

Since the last two values are equal, we take y(0.3)  1.4004.
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Hence y(0.3)  1.4004 approximately.

Obs. In Example 10.8, we obtained the approximate value of y 
for x  0.3 to be 1.53 whereas by the modified Euler’s method 
the corresponding value is 1.4003 which is nearer its true 
value 1.3997, obtained from its exact solution y  2ex – x – 1 by 
putting x  0.3.

EXAMPLE 10.11

Using the modified Euler’s method, find y(0.2) and y(0.4) given

 y  y  ex, y(0)  0.
Solution:

We have y  y  ex  f (x, y); x  0, y  0 and h  0.2

The various calculations are arranged as under:

To calculate y(0.2):

x y  ex  y Mean slope Old y  h (Mean slope)
  new y

0.0 1 — 0  0.2 (1)  0.2
0.2 0.2  e0.2  1.4214 1

2 1 1.4214 1.) 07( 21  0  0.2 (1.2107)  0.2421

0.2 0.2421  e0.2  1.4635 1
2 1 1.4635 1.) 17( 23  0  0.2 (1.2317)  0.2463

0.2 0.2463  e0.2  1.4677
1 1.467

1
( )

2
7 1.2338 

0  0.2 (1.2338)  0.2468

0.2 0.2468  e0.2  1.4682 1
2 1 1.468( ) 12 .2341 0  0.2 (1.2341)  0.2468

Since the last two values of y are equal, we take y (0.2)  0.2468.

To calculate y(0.4):

x y  ex Mean slope Oldy  0.2 (mean slope) new y

0.2 0.2468  e0.2  1.4682 — 0.2468  0.2 (1.4682)  0.5404

0.4 0.5404  e0.4  2.0322 1
2 1.4682 2.0322)(

1.7502




0.2468  0.2 (1.7502)  0.5968

NOTE
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x y  ex Mean slope Oldy  0.2 (mean slope) new y

0.4 0.5968  e0.4  2.0887 1
2 1.4682 2.0( )887

1.7784




0.2468  0.2 (1.7784)  0.6025

0.4 0.6025  e0.4  2.0943 1
2 (1.4682 2.09 )

= 1.7 5
43

812
 0.2468  0.2 (1.78125)  0.6030

0.4 0.6030  e0.4  2.0949 1
2 1.4682 2.0(

= 1.
949

5
)

781
 0.2468  0.2 (1.7815)  0.6031

0.4 0.6031  e0.4  2.0949 1
2 1.4682 2.0( )

= 1.
9

6
49

781
 0.2468  0.2 (1.7815)  0.6031

Since the last two value of y are equal, we take y(0.4)  0.6031

Hence y(0.2)  0.2468 an d y(0.4)  0.6031 approximately.

EXAMPLE 10.12

Solve the following by Euler’s modified method:

 log( ) ( ), 0 2
dy

x y y
dx
  

at x  1.2 and 1.4 with h  0.2.

Solution:

The various calculations are arranged as follows:

x log (x  y)  y Mean slope Old y  0.2 (mean slope)  new y

0.0

0.2

0.2

log (0  2)

log (0.2  2.0602)

log (0.2  2.0655)

—
1
2 0.310( )0.3541
1
2 0.301( )0.3552

2  0.2(0.301)  2.0602

2  0.2 (0.3276)  2.0655

2  0.2 (0.3281)  2.0656

0.2

0.4

0.4

0.3552

log (0.4  2.1366)

log (0.4  2.1415)

—
1
2 0.3552 0.4 )( 042

1
2 0.3552 0.4( )051

2.0656  0.2 (0.3552)  2.1366

2.0656  0.2 (0.3797)  2.1415

2.0656  0.2 (0.3801)  2.1416

0.4

0.6

0.6

0.4051

log (0.6  2.2226)

log (0.6  2.2272)

—
1
2 0.4051 0.4( )506

1
2 0.4051 0.4( )514

2.1416 0.2 (0.4051)  2.2226

2.1416  0.2 (0.4279)  2.2272

2.1416  0.2 (0.4282)  2.2272
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x log (x  y)  y Mean slope Old y  0.2 (mean slope)  new y

0.6

0.8

0.8

0.4514

log (0.8  2.3175)

log (0.8  2.3217)

—
1
2 0.4514 0.4( )938
1
2 0.4514 0.4( )943

2.2272  0.2 (0.4514)  2.3175

2.2272  0.2 (0.4726)  2.3217

2.2272  0.2 (0.4727)  2.3217

0.8 0.4943 — 2.3217  0.2 (0.4943)  2.4206

1.0 log (1  2.4206) 1
2 0.4943 )0.5341 2.3217  0.2 (0.5142)  2.4245

1.0 log (1  2.4245) 1
2 0.4943 0.5( )346 2.3217  0.2 (0.5144)  2.4245

1.0 0.5346 — 2.4245  0.2 (0.5346)  2.5314

1.2 log (1.2  2.5314) 1
2 0.5346 0.5( )719 2.4245  0.2 (0.5532)  2.5351

1.2 log (1.2  2.5351) 1
2 0.5346 0.5( )723 2.4245  0.2 (0.5534)  2.5351

1.2 0.5723 — 2.5351  0.2 (0.5723)  2.6496

1.4 log (1.4  2.6496) 1
2 0.5723 0.6( )074 2.5351  0.2 (0.5898)  2.6531

1.4 log (1.4  2.6531) 1
2 0.5723 0.6( )078 2.5351  0.2 (0.5900)  2.6531

Hence y(1.2)  2.5351 an d y(1.4)  2.6531 approximately.

EXAMPLE 10.13

Using Euler’s modified method, obtain a solution of the equation

 /dy dx x y   

with initial conditions y  1 at x  0, for the range 0 £ x £ 0.6 in steps of 0.2.

Solution:

The various calculations are arranged as follows:

x x y y  Mean slope Old y  0.2
(mean slope)  new y

0.0 0  1  1 — 1  0.2 (1)  1.2
0.2  0.2 1.2

= 1.2954


1
2 1 1.2954( )

= 1.1477
 1  0.2 (1.1477)  1.2295
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x x y y  Mean slope Old y  0.2
(mean slope)  new y

0.2  0.2 1.2295

= 1.3088


1
2 1 1.3088( )

= 1.1544
 1  0.2 (1.1544)  1.2309

0.2  0.2 1.2309

= 1.3094


1
2 1 1.3094( )

= 1.1547
 1  0.2 (1.1547)  1.2309

0.2 1.3094 — 1.2309  0.2 (1.3094)  1.4927

0.4  0.4 1.4927

= 1.6218


1
2 1.3094 1.6( )

= 1.
2

4
18

465
 1.2309  0.2 (1.4654)  1.5240

0.4  0.4 1.524

= 1.6345


1
2 1.3094 1.6( )

= 1.
3

8
45

471
 1.2309  0.2 (1.4718)  1.5253

0.4  0.4 1.5253

= 1.6350


1
2 1.3094 1.6( )

= 1.
3

1
50

472
 1.2309  0.2 (1.4721)  1.5253

0.4 1.6350 — 1.5253  0.2 (1.635)  1.8523
0.6  0.6 1.8523

= 1.9610


1
2 1.635 1.961)(

1.798




1.5253  0.2 (1.798)  1.8849

0.6  0.6 1.8849

= 1.9729


1
2 1.635 1.97( )

= 1. 0
29

804
 1.5253  0.2 (1.804)  1.8861

0.6  0.6 1.8861

= 1.9734


1
2 1.635 1.97( )

= 1. 2
34

804
 1.5253  0.2 (1.8042)  1.8861

Hence y(0.6)  1.8861 approximately.

Exercises 10.2 

1. Apply Euler’s method to solve y  x  y, y(0)  0,
choosing the step length  0.2. (Carry out six steps). 

2. Using Euler’s method, find the approximate value of y when x  0.6 of 
dy/dx  1 – 2xy, given that y  0 when x  0 (take h  0.2). 

3. Using the simple Euler’s method solve for y at x  0.1 from dy/dx  x  
y  xy, y(0)  1, taking step size h  0.025.
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4. Solve y  1 – y, y(0)  0 
by the modified Euler’s method and obtain y at x  0.1, 0.2, 0.3

5. Given that dy/dx  x2  y and y(0)  1. Find an approximate value of 
y(0.1), taking h  0.05 by the modified Euler’s method.

6. Given y  x  sin y, y(0)  1. Compute y(0.2) and y(0.4) with h  0.2 
using Euler’s modified method. 

7. Given dy y x
dx y x





with boundary conditions y  1 when x  0, find 

approximately y for x  0.1, by Euler’s modified method (five steps)

8. Given that  /  2  dy dx xy  and y  1 when x  1. Find approximate 
value of y at x  2 in steps of 0.2, using Euler’s modified method. 

10.6 Runge’s Method*

Consider the differential equation, 0 0( , ), ( )
dy

f x y y x y
dx
   (1)

Clearly the slope of the curve through P(x0, y0) is f(x0, y0) (Figure 10.2).

Integrating both sides of (1) from (x0, y0) to (x0  h, y0  k), we have

 
0 0

0 0

( , )
y k x h

y x
dy f x y dx

 
   (2)

0

x 0x0 hh
L                              N                             M X

Y

y0

P
H

R
S1

S

T′

Q

T

θ
θ′

FIGURE 10.2

*Called after the German mathematician Carl Runge (1856-1927).
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To evaluate the integral on the right, we take N as the mid-point of LM 
and find the values of f(x, y) (i.e., dy/dx) at the points x0, x0  h/2, x0  h. For 
this purpose, we first determine the values of y at these points. 

Let the ordinate through N cut the curve PQ in S and the tangent PT in 
S1. The value of yS is given by the point S1

 1 1 0 . tan
S

y NS LP HS y PH     

                                                      0 00 0( )
2

)/ ( ,p
h

y h dy dx y f x y     (3)

Also         0 0 00.tan ( ).T hf x yy MT LP RT y PR y       

Now the value of yQ at x0  h is given by the point T  where the line 
through P draw with slope at T(x0  h, yT) meets MQ.

Slope at  0 0 0 0 0tan  , ,( ) )],[ (TT f x h y f x h y hf x y      

           0 0 0 0 0 0 .tan [ , ( ,  )]Qy R RT y PR y hf x h y hf x y        
 (4)

Thus the value of f(x, y) at P  f(x0, y0),

the value of f(x, y) at S  f(x0  h/2, yS)

and the value of f(x, y) at Q (x0  h, yQ)

where yS and yQ are given by (3) and (4).

Hence from (2), we obtain

 

0

0

0 0 0 0

( , ) 4
6

( ) ( /2, ) ( ,
6

x h

P S Qx

S Q

h
k f x y dx f f f

h
f x y f x h y x h y

      

       


 
by Simpson’s rule

Which gives a sufficiently accurate value of k and also y  y0  k

The repeated application of (5) gives the values of y for equi-spaced 
points.

Working rule to solve (1) by Runge’s method: 

Calculate successively

 1 0 0( ,  ),k hf x y

 2 0 0 1
1 1
2 2

k hf x hy k
 

   
 

  0 0 1,k hf x h y k  
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and                3 0 0,k hf x h y k  

Finally compute,  1 2 3
1

4
6

k k k k  

which gives the required approximate value as y1  y0  k.

(Note that k is the weighted mean of k1, k2, and k3).

EXAMPLE 10.14

Apply Runge’s method to find an approximate value of y when x  0.2, 
given that dy/dx  x  y and y  1 when x  0.

Solution:

Here we have x0  0, y0  1, h  0.2, f(x0, y0)  1

 
 1 0 0( ,  ) 0.2 1 0.200k hf x y  

            2 0 0 1
1 1

0.2400.2 0.1,1.1
2 2

k hf x hy k f
 

   





               0 0 1, 0 0..2 0.2, 282 01.k hf x h y k f    

and     3 0 0, 0.2 0.1,1.28 0.296k hf x h y k f    

    1 2 3
1 1

k 4k k 0.200 0.960 0. 0.2426
6 6

629k      

Hence the required approximate value of y is 1.2426.

10.7 Runge-Kutta Method*

The Taylor’s series method of solving differential equations numerical-
ly is restricted by the labor involved in finding the higher order derivatives. 
However, there is a class of methods known as Runge-Kutta methods which 
do not require the calculations of higher order derivatives and give greater 
accuracy. The Runge-Kutta formulae possess the advantage of requiring 
only the function values at some selected points. These methods agree with 
Taylor’s series solution up to the term in hr where r differs from method to 
method and is called the order of that method. 

First order R-K method. We have seen that Euler’s method (Section 
10.4) gives

 1 0 0 0 0 0( ,  )y y hf x y y hy     [ y  f(x, y)]
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Expanding by Taylor’s series

 
2

1 0 0 0 0( )
2
h

y y x h y hy y      

It follows that the Euler’s method agrees with the Taylor’s series solu-
tion upto the term in h. 

Hence, Euler’s method is the Runge-Kutta method of the first order. 

 Second order R-K method. The modified Euler’s method gives

 1 0 0 0 1( ,  ) ( ,  )
2
h

y y f x y f x h y      (1)

Substituting y1  y0  hf(x0, y0) on the right-hand side of (1), we obtain

 1 0 0 0 0 0( ),
2
h

y y f f x h y hf       where  f0  (x0, y0) (2)

Expanding L.H.S. by Taylor’s series, we get

  
2 3

1 0 0 0 0 02! 3!
h h

y y x h y hy y y          (3)

Expanding f(x0  h, y0  hf0) by Taylor’s series for a function of two 
variables, (2) gives

  2 **
1 0 0 0 0 0 0

0 0

( , ) ( )
2

f fh
y y f f x y h hf O h

x y

                
       

             2 3
0 0 0

0 0

1
2

f f
y hf hf h O h

x y

               
       

             
2

3
0 0 02

h
y hf f O h     

 ,df x y f f
f

dx x y

  
  

   


                
2

3
0 0 02!

h
y hy y O h      (4)

Comparing (3) and (4), it follows that the modified Euler’s method 
agrees with the Taylor’s series solution upto the term in h2.

Hence the modified Euler’s method is the Runge-Kutta method of the 
second order.

**O(h2) means “terms containing second and higher powers of h” and is read as order of h2.



442 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

 The second order Runge-Kutta formula is

  1 0 1 2
1
2

y y k k  

Where k1  hf (x0, y0) and k2  hf(x0  h, y0  k)

(iii) Third order R-K method. Similarly, it can be seen that Runge’s meth-
od (Section 10.6) agrees with the Taylor’s series solution upto the term in h3.

As such, Runge’s method is the Runge-Kutta method of the third order.

 The third order Runge-Kutta formula is

  1 0 1 2 3
1

4
6

y y k k k   

Where, 1 0 0 2 0 0 1
1 1

( , ), ,
2 2

k hf x y k hf x h y k
 

    
 

And  3 0 0, ,k hf x h y k    where 3 0 0 1( , )k k hf x h y k    .

(iv) Fourth order R-K method. This method is most commonly used 
and is often referred to as the Runge-Kutta method only.

Working rule for finding the increment k of y corresponding to an 
increment h of x by Runge-Kutta method from

 0( , ), ( )
dy

f x y y x
dx


is as follows:

Calculate successively k1  hf(x0, y0),

               
2 0 0 1

3 0 0 2

1 1
,

2 2
1 1

,
2 2

k hf x h y k

k hf x h y k

 
   

 

 
   

 

and                         4 0 0 3,k hf x h y k  

Finally compute            1 2 3 4
1

2 2
6

k k k k k   

which gives the required approximate value as y1  y0  k.

(Note that k is the weighted mean of k1, k2, k3, and k4).

Obs. One of the advantages of these methods is that the 
operation is identical whether the differential equation is linear 
or non-linear.

NOTE
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EXAMPLE 10.15

Apply the Runge-Kutta fourth order method to find an approximate 
value of y when x  0.2 given that dy/dx  x  y and y  1 when x  0.

Solution:

Here      x0  0, y0  1, h  0.2, f(x0, y0)  1

 1 0 0( , ) 0.2 1= 0.2000k hf x y  

  2 0 0 1
1 1

0.2400, 0.2 0.1,1.1
2 2

k hf x h y k f
 

    
 



  3 0 0 2
1 1

, 0.2 0.1,1.12
2 2

0.2440k hf x h y k f
 

     
 



and    4 0 0 3, 0.2 0.2, 0.2881.24 84k hf x h y k f     

    

 

 

1 2 3 4
1

2 2
6
1

0.2000 0.4800 0.4880 0.2888
6
1

1.4568 0.2428
6

k k k k k   

   

  

Hence the required approximate value of y is 1.2428.

EXAMPLE 10.16

Using the Runge-Kutta method of fourth order, solve 
2 2

2 2

dy y x
dx y x




with y(0)  1 at x  0.2, 0.4.

Solution:

We have 
2 2

2 2( , )
y x

f x y
y x






To find y(0.2)

Hence x0  0, y0  1, h  0.2

  1 0 0( , ) 0.2 0,1 0.2000k hf x y f 

  2 0 0 1
1 1

, 0.2 0.1,1.1
2 2

0.19672k hf x h y k f
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  3 0 0 2 0.1967
1 1

, 0.2 0.1,1.09836
2 2

k hf x h y k f
 

     
 

    4 0 0 3, 0.2 0.2,1. 0.119 867 91k hf x h y k f    

    1 2 3 4
1

2 2
6

k k k k k   

          1
0.2 2 0.19672 2 0.1967 0.18  0.1959991

6
    

Hence y(0.2)  y0  k  1.196.

To find y(0.4):

Here x1  0.2, y1  1.196, h  0.2.

 1 1 1( , 0.1891)k hf x y 

  2 1 1 1 0.1795
1 1

, 0.2 0.3,1.2906
2 2

k hf x h y k f
 

    
 



  3 1 1 2 0.1793
1 1

, 0.2 0.3,1.2858
2 2

k hf x h y k f
 

    
 



    4 1 1 3, 0.2 0.4,1. 0.137 653 88k hf x h y k f    

  1 2 3 4
1

2 2
6

k k k k k   

         1
0.1891 2 0.1795 2 0.1793 0.1688 0 1 2

6
. 79   

Hence   y(0.4)  y1  k  1.196  0.1792  1.3752.

EXAMPLE 10.17

Apply the Runge-Kutta method to find the approximate value of y for 
x  0.2, in steps of 0.1, if dy/dx  x  y2, y  1 where x  0.

Solution:

Given f(x, y)  x  y2.

Here we take h  0.1 and carry out the calculations in two steps.

Step I. x0  0, y0  1, h  0.1

  1 0 0( , ) 0.1 0,1 0.1000k hf x y f 
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    2 0 0 1
1 1

, 0.1 0.05,1.1
2 2

0.1152k hf x h y k f
 

   
 



          3 0 0 2 0.1168
1 1

, 0.1 0.05,1.1152
2 2

k hf x h y k f
 

     
 

    4 0 0 3, 0.1 0.1,1. 0.111 368 47k hf x h y k f    

            1 2 3 4
1

2 2
6

k k k k k   

     
1

0.1000 0.2304 0.2336 0.1347 0 1
6

.1 65   

giving 0(0.1) 1.1165y y k  

Step II. x1  x0  h  0.1, y1 1.1165, h  0.1

       1 1 1( , ) 0.1 0.1,1.1165 0.1347k hf x y f  

          2 1 1 1 0.1551
1 1

, 0.1 0.15,1.1838
2 2

k hf x h y k f
 

     
 

          3 1 1 2 0.1576
1 1

, 0.1 0.15,1.194
2 2

k hf x h y k f
 

    
 



          4 1 2 3( , ) 0.1 0.2,1. 0.18231576k hf x h y k f    

        1 2 3 4 0.15
1
6

72 2 1k k k k k    

Hence 1(0.2) 1.2736y y k  

EXAMPLE 10.18

Using the Runge-Kutta method of fourth order, solve for y at x  1.2, 
1.4

From 
2

2 x

x

dy xy e
dx x xe





 given x0  1, y0  0

Solution:

We have 2

2
( , )

x

x

xy e
f x y

x xe






To find y(1.2):
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Here x01, y00, h0.2

      1 0 0
0

( , ) 0.2 0.1462
1

e
k hf x y

e


  


      
  

   

1 0.1
1

2 0 0 2 1 0.1

2 1 0.1 0 0.073
, 0.2

2 2 1 0.1 1 0.1
0.1402

kh e
k hf x y

e





     
     

      



      
  

   

1.1

3 0 0 2 2 1.1

1 1 2 1 0.1 0 0.07
, 0.2

2 2 1 0.1 1 0.1
0.1399

e
k hf x h y k

e

     
     

      



       
    

   

1.2

4 0 0 3 2 1.2

2 1.2 0.1399
, 0.2

1.2 1.2
0.1348

e
k hf x h y k

e

  
    
  



and    1 2 3 4
1 1

2 2 0.1462 0.2804 0.2798 0.1348
6 6
0.1402

k k k k k       



Hence  y(1.2)  y0  k  0  0.1402  0.1402.

To find y (1.4):

Here 1 11.2, 0.1402, 0.2x y h  

              1 1 1( , ) 0.2 1.2,0 0.1348k hf x y f  

                2 1 1 1/2, /2 0.2 1.3,0.2076 0.1303k hf x h y k f    

                3 1 1 2/2, /2 0.2 1.3,0.2053 0.1301k hf x h y k f    

              4 1 1 3( , ) 0.2 1.3,0.2703 0.1260k hf x h y k f    

    

 

1 2 3 4
1

2 2
6
1

0.1348 0.2606 0.2602 0.1260
6
0.1303

k k k k k   

   



Hence   1(1.4) 0.1402 0.1303 0.2705.y y k    
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Exercises 10.3

1. Use Runge’s method to approximate y when x  1.1, given that y  1.2 
when x  1 and dy/dx  3x  y2.

2. Using the Runge-Kutta method of order 4, find y(0.2) given that dy/dx  
3x y2, y(0)  1 taking h  0.1.

3. Using the Runge-Kutta method of order 4, compute y(0.2) and y(0.4) 

from 10 2 2dy
x y

dx
   y(0)  1, taking h  0.1. 

4. Use the Runge Kutta method to find y when x  1.2 in steps of 0.1, given 
that dy/dx  x2  y2 and y(1)  1.5. 

5. Given dy/dx  x3  y, y(0)  2. Compute y(0.2), y(0.4), and y(0.6) by the 
Runge-Kutta method of fourth order. 

6. Find y(0.1) and y(0.2) using the Runge-Kutta fourth order formula, 
given that y  x2 – y and y(0)  1.

7. Using fourth order Runge-Kutta method, solve the following equation, 
taking each step of h  0.1, given y(0)  3. dy/dx (4x/y – xy). Calculate y 
for x  0.1 and 0.2.

8. Find by the Runge-Kutta method an approximate value of y for x  0.6, 

given that y  0.41 when x  0.4 and  /dy dx x y   

9. Using the Runge-Kutta method of order 4, find y(0.2) for the equation

,
dy y x
dx y x





, y(0)  1. Take h  0.2. 

10. Using fourth order Runge-Kutta method, integrate 
3 2–2 12 – 20 8.5,y x x x    using a step size of 0.5 and initial condition 

of y  1 at x  0.

11. Using the fourth order Runge-Kutta method, find y at x  0.1 given that 
dy/dx  3ex  2y, y(0)  0 and h  0.1. 

12. Given that dy/dx  (y2 – 2x)/(y2  x) and y  1 at x  0, find y for x  0.1, 
0.2, 0.3, 0.4, and 0.5. 
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10.8 Predictor-Corrector Methods

If xi–1 and xi are two consecutive mesh points, we have xi  xi–1  h. In 
Euler’s method (Section 10.4), we have

 -1 0 -1( - 1 , ); 1,2,3i i iy y hf x i h y i      (1)

The modified Euler’s method (Section 10.5), gives

 -1 -1 -1( , ) ( , )
2i i i i i i
h

y y f x y f x y    

The value of yi is first estimated by using (1), then this value is inserted 
on the right side of (2), giving a better approximation of yi. This value of yi 
is again substituted in (2) to find a still better approximation of yi. This step 
is repeated until two consecutive values of yi agree. This technique of refin-
ing an initially crude estimate of yi by means of a more accurate formula 
is known as predictor-corrector method. The equation (1) is therefore 
called the predictor while (2) serves as a corrector of yi.

In the methods so far described to solve a differential equation over an 
interval, only the value of y at the beginning of the interval was required. In 
the predictor-corrector methods, four prior values are needed for finding 
the value of y at xi. Though slightly complex, these methods have the ad-
vantage of giving an estimate of error from successive approximations to yi.

We now describe two such methods, namely: Milne’s method and 
Adams-Bashforth method.

10.9 Milne’s Method

Given dy/dx  f(x, y) and y  y0, x  x0; to find an approximate value of 
y for x  x0  nh by Milne’s method, we proceed as follows:

The value y0  y(x0) being given, we compute

 y1  y(x0  h), y2  y(x0  2h), y3  y(x0  3h),
by Picard’s or Taylor’s series method.

Next we calculate,

          f0  f(x0, y0), f1  f(x0  h, y1), f2  f(x0  2h, y2), f3   f(x0  3h, y3)

Then to find y4  y(x0  4h), we substitute Newton’s forward interpola-
tion formula

2 3
0 0 0 0

( 1) ( 1)( 2)
( , )

2 6
n n n n n

f x y f n f f f
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In the relation

              
0

0

4

4 0 ( , )
x h

x
y y f x y dx


 

 
 0

0

4 2
4 0 0 0 0

1
...

2

x h

x

n n
y y f n f f dx

  
       

 
 [Put x  x0  nh, dx  hdn]

                  
 4 2

0 0 0 00

1
...

2
n n

y f n f f dn
 

       
 

                  2
0 0 0 0

20
4 8 ...

3
y h f f f

 
       

 

Neglecting fourth and higher order differences and expressing 
2 3

0 0 0, and f f f    and in terms of the function values, we get

  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

which is called a predictor.

Having found y4, we obtain a first approximation to

              4 0 4( 4 , )f f x h y 

Then a better value of y4 is found by Simpson’s rule as

               4 2 2 3 44
3

c h
y y f f f   

which is called a corrector.

Then an improved value of f4 is computed and again the corrector is 
applied to find a still better value of y4. We repeat this step until y4 remains 
unchanged. Once y4 and f4 are obtained to desired degree of accuracy, y5  
y(x0  5h) is found from the predictor as

             ( )
5 1 2 3 4

4
2 2

3
p h

y y f f f   

and f5  f(x0  5h, y5) is calculated. Then a better approximation to the value 
of y5 is obtained from the corrector as

             ( )
5 3 3 4 54

3
c h

y y f f f   

We repeat this step until y5 becomes stationary and, then proceed to 
calculate y6 as before. 
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This is Milne’s predictor-corrector method. To insure greater accuracy, 
we must first improve the accuracy of the starting values and then sub-
divide the intervals.

EXAMPLE 10.19

Apply Milne’s method, to find a solution of the differential equation 
2–y x y in the range 0  x  1 for the boundary condition y  0 at x  0.

Solution:

Using Picard’s method, we have

 
0

0 ( , ) ,
x

y y f x y dx   where 2( , )f x y x y 

To get the first approximation, we put y  0 in f(x, y),

Giving 
2

1 0
0

2

x
y xdx

x
  

To find the second approximation, we put

Giving 
4 2 5

2 0 4 2 20

x
y x d

x x
x

x 
    
 


Similarly, the third approximation is

 
2 5 2 5 8 12

3 0

1

2 20 2 20 160 4400

x
y x d

x x x x x x
x

  
        
   
  (i)

Now let us determine the starting values of the Milne’s method from 
(i), by choosing h  0.2.

 x0  0.0, y0  0.0000, f0
  0.0000

 x1  0.2, y1  0.020, f1
  0.1996

 x2  0.4, y2  0.0795 f2
  0.3937

 x3  0.5, y3  0.1762, f3
  0.5689

Using the predictor,  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

 x  0.8   ( )
4 0.3049,py    f4  0.7070

and the corrector,  ( )
4 2 2 3 44 ,

3
c h

y y f f f     yields

 ( )
4 0.3046cy    f4  0.7072 (ii)
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Again using the corrector,

           ( )
4 0.3046,cy  , which is the same as in (ii)

Now using the predictor,

            ( )
4 1 2 3 4

4
2 2

3
p h

y y f f f   

x 0.1,     ( )
5 0.4554py    f5  0.7926

and the corrector  ( )
5 3 3 4 54

3
c h

y y f f f     gives

           ( )
5 0.4555cy    f5  0.7925

Again using the corrector,

           ( )
5 0.4555,cy  a value which is the same as before.

Hence y(1) 0.4555.

EXAMPLE 10.20

Using Milne’s method find y(4.5) given 5xy  y2  2  0 given y(4)  1, 
y(4.1)  1.0049, y(4.2)  1.0097, y(4.3)  1.0143; y(4.4)  1.0187.

Solution:

We have 2(2 – )/5 ( )y y x f x   [say]

Then the starting values of the Milne’s method are

 x0  0, y0  1, 0
2 12

0.05
5 4

f


 


 x1  4.1, y1
  1.0049, f1  0.0485

 x2  4.2, y2
  1.0097, f2  0.0467

 x3  4.3, y3
  1.0143, f3  0.0452

 x4  4.4, y4
  1.0187, f4  0.0437

Since y5 is required, we use the predictor

                  ( )
5 1 2 3 4

4
2 2

3
p h

y y f f f      (h  0.1)

x  4.5, 
 

 ( )
5

4 0.1
1.0049 2 2.0467 0.0452 2 0.0437 1.023

3
py       
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 22

5
5

5

2 2 1.023
0.0424

5 5 4.5
y

f
x
 

  


Now using the corrector  ( )
5 3 3 4 54

3
c h

y y f f f    , we get

  ( )
5

0.1
1.0143 0.0452 4 0.0437 0.0424 1.023

3
cy      

Hence  y(4.5)  1.023

EXAMPLE 10.21

Given y x(x2  y2) e–x, y(0)  1, find y at x  0.1, 0.2, and 0.3 by Taylor’s 
series method and compute y(0.4) by Milne’s method.

Solution:

Given  y(0)  1 and h  0.1

We have 2 2( ) ( ) xy x x x y e     0 0y 

 3 2 2 2( ) ( )( ) (3 (2 ) )x xy x x xy e x y x y y e        

          3 2 2 23 2xe x xy x y xyy        ;  0 1y 

 

 

3 2 2 2 2( ) 3 2 6 2 2 ' 2

0 2

xy x e x xy x y xyy x yy xy xyy

y

               

 

Substituting these values in the Taylor’s series,

          
2 3

( ) 0 0 0 0
1! 2! 3!
x x x

y x y y y y      

      2 31 1
(0.1) 1 (0.1) 0 (0.1) 1 (0.1) 2

2 6
y      

 1  0.005 – 0.0003  1.0047, i.e., 1.005
Now taking  x  0.1, y(0.1)  1.005, h  0.1

               0.1 0.092, 0.1 0.849, 0.1 1.247y y y    

Substituting these values in the Taylor’s series about x  0.1,

   
 

 
 

 
2 30.1 0.1 0.1

(0.2) 0.1 0.1 0.1 0.1
1! 2! 3!

y y y y y      

              
     

2 3(0.1) (0.1)
1.005 (0.1) 0.092 0.849 1247

2 6
=1.018
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Now taking  x  0.2, y(0.2)  1.018, h  0.1

      0.2 0.176, 0.2 0.77, 0.2 0.819y y y    

Substituting these values in the Taylor’s series

   
 

 
 

 
2 30.1 0.1 0.1

(0.2) 0.2 0.2 0.2 0.2
1! 2! 3!

y y y y y      

 1.018  0.0176  0.0039  0.0001
                       1.04
Thus the starting values of the Milne’s method with h  0.1 are

 x0  0.0, y0  1 f0  y00
 x1  0.1, y1  1.005 f1  0.092
 x2  0.2, y2  1.018 f2  0.176
 x3  0.3, y3  1.04 f3  0.26

Using the predictor,  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

      
   2 0.092 0.1

4 0.1
1 [ 76 ]6

3
2 0.2  

                              1.09.
x  0.4  

( )
4 1.09,py     4 0.4 0.362f y 

Using the corrector,  ( )
4 2 2 3 44 ,

3
c h

y y f f f     yields

 ( )
4

0.1
0.018 (0.176 + 4(0.26) + 0.362) = 1.071

3
cy  

Hence y(0.4)  1.071

EXAMPLE 10.22

Using the Runge-Kutta method of order 4, find y for x  0.1, 0.2, 0.3 
given that dy/dx  xy  y2, y(0)  1. Continue the solution at x  0.4 using 
Milne’s method.

Solution:

We have  f(x, y)  xy  y2.

To find y(0.1):

Here x0  0, y0  1, h  0.1.

    1 0 0( , ) 0.1 0, 0.101 00k hf x y f   
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    2 0 0 1 0
1 1

, 0.1 0.0 .11555,1.05
2 2

k hf x h y k f
 

     
 



    3 0 0 2 0.1172
1 1

, 0.1 0.05,1.0577
2 2

k hf x h y k f
 

      
 

      4 0 0 3, 0.1 0.1, 0.135981.1172k hf x h y k f     

    1 2 3 4
1

2 2
6

k k k k k   

       
1

0.1 0.231 0.2343 0.1359 0.1 6 78 1 8
6

   

Thus 1 0(0.1) 1.1169y y y k   

To find y(0.2):

Here x1 0.1, y1 1.1169, h0.1

                  1 1 1, 0.1 0.1,1.116 0 13 99 . 5k hf x y f   

                2 1 1 1 0.1581
1 1

, 0.1 0.15,1.1848
2 2

k hf x h y k f
 

      
 

                3 1 1 2 0.1609
1 1

, 0.1 0.15,1.1959
2 2

k hf x h y k f
 

      
 

                  4 1 1 3, 0.1 0.2 0.1888,1.2778k hf x h y k f     

                1 2 3 4 0.16
1
6

02 2 5k k k k k    

Thus  y(0.2)  y2  y1  k  1.2773.

To find y(0.3):

Here x2  0.2, y2  1.2773, h  0.1.

                1 2 2( , ) 0.1 0.2, 0.1881.27 3 77k hf x y f     

    2 2 2 1 0.2224
1 1

, 0.1 0.25,1.3716
2 2

k hf x h y k f
 

      
 

                3 2 2 2 0.2275
1 1

, 0.1 0.25,1.3885
2 2

k hf x h y k f
 

     
 

      4 2 2 3, 0.1 0.3,1. 0.250 748 16k hf x h y k f    
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   1 2 3 4 0.22
1
6

62 2 7k k k k k    

 3 2(0.3) 1.504y y y k   

Now the starting values for the Milne’s method are:

x0  0.0  y0  1.0000  f0  1.0000
x1  0.1 y1  1.1169 f1  1.3591
x2  0.2 y2  1.2773  f2  1.8869
x3  0.3 y3  1.5049 f3  2.7132

Using the predictor

  ( )
4 0 1 2 3

4
2 2

3
p h

y y f f f   

 
( )

4 4 40.4 1.8344 4.0988px y f  

and the corrector,

  ( )
4 2 2 3 44

3
c h

y y f f f   

   ( )
4

0.1
1.2773 1.8869 4 2.7132 4.098

3
cy    

        1.8397 f4  4.1159.
Again using the corrector,

   ( )
4

0.1
1.2773 1.8869 4 2.7132 4.1159

3
cy    

                         1.8391 f4  4.1182 (i)
Again using the corrector,

   ( )
4

0.1
1.2773 1.8869 4 2.7132 4.1182

3
cy    

        1.8392 which is same as (i)

Hence y(0.4) 1.8392.

Exercises 10.4

1. Given 3 ,
dy

x y
dx
   y(0)  2. The values of y(0.2)  2.073, y(0.4)  2.452, 

and y(0.6)  3.023 are gotten by the R.K. method of the order. Find 
y(0.8) by Milne’s predictor-corrector method taking h  0.2 



456 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

2. Given 2 dy/dx (1  x2)y2 and y(0)  1, y(0.1)  1.06, y(0.2)  1.12, 
y(0.3)  1.21, evaluate y(0.4) by Milne’s predictor corrector method.

3. Solve that initial value problem

 21 , (0) 1
dy

xy y
dx
  

for x  0.4 by using Milne’s method, when it is given that

x: 0.1 0.2 0.3
y: 1.105 1.223 1.355

4. From the data given below, find y at x  1.4, using Milne’s predictor-
corrector formula: dy/dx  x2  y/2:

x  1 1.1  1.2  1.3

y  2 2.2156 2.4549 2.7514

5. Using Taylor’s series method, solve 2 ,
dy

xy x
dx
   y(0)  1; at x  0.1, 

0.2, 0.3. Continue the solution at x  0.4 by Milne’s predictor-corrector 
method.

6. If y  2ex – y, y(0)  2, y(0.1)  2.01, y(0.2)  2.04, and y  2.09, find 
y(0.4) using Milne’s predictor-corrector method.

7. Using the Runge-Kutta method, calculate y (0.1), y(0.2), and y(0.3) 

given that 2

2
1.

1

dy xy
dx x
 


 y(0)  0. Taking these values as starting val-

ues, find y(0.4) by Milne’s method.

10.10 Adams-Bashforth Method

Given ( , )
dy

f x y
dx
  and y0  y(x0), we compute

 1 0 2 0 3 0( ), ( 2 ), ( 3 )y y x h y y x h y y x h       

by Taylor’s series or Euler’s method or the Runge-Kutta method.
Next we calculate

             1 0 1 2 0 2 3 0 3( , ), ( 2 , ), ( 3 , )f f x h y f f x h y f f x h y          

Then to find y1, we substitute Newton’s backward interpolation formula

 2 3
0 0 0 0

( 1) ( 1)( 2
( , )

2 6
n n n n n

f x y f n f f f
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in               
0

0
1 0 ( , )

x h

x
y y f x y


   (1)

       
1

0

2
1 0 0 0 0

( 1)
2

x

x

n n
y y f n f f dx

 
       

  

[Put x  x0  nh, dx  hdn]

 
1 2

0 0 0 00

( 1)
2

n n
y h f n f f dn

 
       

  

 2 3
0 0 0 0 0

1 5 3
2 12 8

y h f f f f
 

         
 



Neglecting fourth and higher order differences and expressing  
2 3

0 0 0,  and f f f    in terms of function values, we get

  1 0 0 1 2 355 59 37 9
24
h

y y f f f f        (2)

This is called the Adams-Bashforth predictor formula.

Having found y1, we find f1  f(x0  h1, y1).

Then to find a better value of y1, we derive a corrector formula by sub-
stituting Newton’s backward formula at f1,  i.e.,

 2 3
1 1 1 1

( 1) ( 1)( 2
( , )

2 6
n n n n n

f x y f n f f f
  

       

in (1)

 
1

0

2
1 0 1 1 1

( 1)
2

x

x

n n
y y f n f f dx

 
       

  

[Put x  x1  nh, dx  h dn]

      

0 2
0 1 1 11

( 1)
2

n n
y f n f f dn



 
       

  

      2 3
0 1 1 0 1

1 1 1
2 12 24

y h f f f f
 

         
 



Neglecting fourth and higher order differences and expressing 
2 3

1 1 1,  and f f f    and in terms of function values, we obtain

  ( )
1 0 1 0 1 29 19 5 9

24
c h

y y f f f f     

which is called the Adams-Moulton corrector formula.
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Then an improved value of f1 is calculated and again the corrector (3) is 
applied to find a still better value y1. This step is repeated until y1 remains 
unchanged and then we proceed to calculate y2 as above.

Obs. To apply both Milne and Adams-Bashforth methods, we 
require four starting values of y which are calculated by means 
of Picard’s method or Taylor’s series method or Euler’s method 
or the Runge-Kutta method. In practice, the Adams formulae 
(2) and (3) above together with the fourth order Runge-Kutta 
formulae have been found to be the most useful.

EXAMPLE 10.23

Given  2 1
dy

x y
dx
   and y(1)  1, y(1.1)  1.233, y(1.2)  1.548, 

y(1.3)  1.979, evaluate y(1.4) by the Adams-Bashforth method.

Solution:

Here f(x, y)  x2(1  y)

Starting values of the Adams-Bashforth method with h  0.1 are

x  1.0,  y–3  1.000, f–3  (1.0)2(1  1.000)  2.000
x  1.1,  y–2  1.233,  f–2  2.702
x  1.2,   y–1  1.548, f–1  3.669
x  1.3,    y0  1.979,  f0  5.035
Using the predictor,

  ( )
1 0 0 1 2 355 59 37 9

24
p h

y y f f f f      

      
4 1 11.4, 2.573 7.004p

x y f  

Using the corrector

           ( )
1 0 1 0 1 29 19 5

24
c h

y y f f f f     

 ( )
1

0.1
1.979 9 7.004 19 5.035 5 3.669 2.702 2.575

24
cy         

Hence y(1.4) 2.575

NOTE



NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS • 459

EXAMPLE 10.24

If 2 ,xdy
e y

dx
  y(0)  2, find y(4) using the Adams predictor corrector 

formula by calculating y(1), y(2), and y(3) using Euler’s modified formula.

Solution:

We have f(x, y)2exy

x 2exy Mean slope Oldy  h (mean slop)  new y

0 4 2  0.1(4)  2.4
0.1 2e0.1(2.4) = 5.305  1

2 4 5.305 4.6524  2  0.1 (4.6524)  2.465

0.1 2e0.1(2.465) = 5.449  1
2 4 5.465 4.7244  2  0.1 (4.7244)  2.472

0.1 2e0.1(2.4724) = 5.465  1
2 4 5.465 4.7324  2  0.1 (4.7324)  2.473

0.1 2e0.1(2.478) = 5.467  1
2 4 5.467 4.7333  2  0.1 (4.7333)  2.473

0.1 5.467 — 2  0.1 (5.467)  3.0199
0.2 2e0.2(3.0199) = 7.377  1

2 5.467 7.377 6.422  2.473  0.1 (6.422)  3.1155

0.2 7.611  1
2 5.467 7.611 6.539  2.473  0.1 (6.539)  3.127

0.2 7.639  1
2 5.467 7.639 6.553  2.473  0.1 (6.553)  3.129

0.2 7.643  1
2 5.467 7.643 6.555  2.473  0.1 (6.555)  3.129

0.2 7.463 — 3.129  0.1 (7.643)  3.893
0.3 2e0.3(3.893) = 10.51  1

2 7.643 10.51 9.076  3.129  0.1 (9.076)  4.036

0.3 10.897  1
2 7.643 10.897 9.266  3.129  0.1 (9.2696)  4.056

0.3 10.949  1
2 7.643 10.949 9.296  3.129  0.1 (9.296)  4.058

0.3 10.956  1
2 7.643 10.956 9.299  3.129  0.1 (9.299)  4.0586

To find y(0.4) by Adam’s method, the starting values with h  0.1 are

x  0.0  y–3  2.4  f–3  4
x  0.1  y–2  2.473  f–2  5.467
x  0.2  y–1  3.129 f–1  7.643
x  0.3  y0  4.059  f0  10.956



460 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

Using the predictor formula

              
 ( )

1 0 0 1 2 355 59 37 9
24

p h
y y f f f f      

                    
 

0.1
4.059 55 10.957 59 7.643 37 5.467 9 4

24
5.383

        



Now          0.4
1 10.4 5.383 2 5.383 16.061x y f e   

Using the corrector formula

  ( )
1 0 1 0 1 29 19 5

24
c h

y y f f f f     

 
 

0.1
4.0586 9 16.061 19 10.956 5 7.643 5.467

24
5.392

       



Hence y(0.4)  5.392

EXAMPLE 10.25

Solve the initial value problem dy/dx  x – y2, y(0)  1 to find y(0.4) by 
Adam’s method. Starting solutions required are to be obtained using the 
Runge-Kutta method of the fourth order using step value h  0.1

Solution:

We have f(x, y)  x – y2.

To find y(0.1):

Here x0  0, y0  1, h  0.1.

          1 0 0( , ) 0.1 0,  – 0.10001k hf x y f  

         2 0 0 1 –0.08525
1 1

, 0.1 0.05,0.95
2 2

k hf x h y k f
 

     
 

    3 0 0 2
1 1

, 0.1 0.05,0.957 –0.08674
2 2

k hf x h y k f
 

     
 

           4 0 0 3, 0 –0..1 00.1,0.91 37 7 413k hf x h y k f    

                     1 2 3 4
1

2 2  0 0.0883
6

k k k k k    
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Thus 1 0(0.1) 1 0.0883  0.9117y y y k     

To find y(0.2):

Here x1 0.1, y1 0.9117, h 0.1

      1 1 1, 0.1 0.1,0.9117 –0.0731k hf x y f  

    2 1 1 1 0.0616
1 1

, 0.1 0.15,0.8751
2 2

k hf x h y k f
 

     
 

    3 1 1 2 0.0626
1 1

, 0.1 0.15,0.8809
2 2

k hf x h y k f
 

     
 

      4 1 1 3, 0.1 0.2 0.0521,0.8491k hf x h y k f     

  1 2 3 4 0.06
1
6

22 2 3k k k k k    

Thus  y(0.2)  y2  y1  k  0.8494.

To find y(0.3):

Here x2  0.2, y2  0.8494, h  0.1.

     1 2 2( , ) 0.1 0.25,0.8494 0.0521k hf x y f   

    2 2 2 1 0.0428
1 1

, 0.1 0.25,0.8233
2 2

k hf x h y k f
 

     
 

    3 2 2 2 0.0436
1 1

, 0.1 0.25,0.828
2 2

k hf x h y k f
 

    
 



      4 2 2 3, 0.1 0.3,0 0.0349.058k hf x h y k f   

   
 1 2 3 4 0.04

1
6

32 2 8k k k k k    

Thus 3 2(0.3) 0.8061y y y k   

Now the starting values for the Milne’s method are:

x0  0.0  y0  1.0000  f0  0.0 (0.1)2 1.0000
x1  0.1 y1  0.9117 f1  0.1 (0.9117)2 0.7312
x2  0.2 y2  0.8494  f2  0.2 (0.8494)2 0.5215
x3  0.3 y3  0.8061 f3 0.3 (0.8061)2 0.3498
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Using the predictor,

  ( )
1 0 0 1 2 355 59 37 9

24
p h

y y f f f f      

x  0.4 

        ( )
1

1

0.1
0.8061 55 0.3498 59 0.5215 37 0.7312 9 1

24
0.7789 0.2.67

py

f

        

 

Using the corrector,

 ( )
1 0 1 0 1 29 19 5

24
c h

y y f f f f     

      ( )
1

0.1
0.8061 9 0.2067 19 0.3498 5 0.5215 0.7312

24
0.7785

cy         


Hence  y(0.4)  0.7785

Exercises 10.5

1. Using the Adams-Bashforth method, obtain the solution of dy/dx  x – y2 

at x  0.8, given the values

x: 0  0.2 0.4 0.6
y: 0 0.0200  0.0795 0.1762

2. Using the Adams-Bashforth formulae, determine y(0.4) given the dif-

ferential equation 1
/

2
dy dx xy and the data:

x: 0 0.1 0.2  0.3
y: 1 1.002 5 1.0101  1.0228

3. Given y  x2 – y, y(0)  1 and the starting values y(0.1)  0.90516, 
y(0.2)  0.82127, y(0.3)  0.74918, evaluate y(0.4) using the Adams-
Bashforth method. 

4. Using the Adams-Bashforth method, find y(4.4) given 5xy  y2  2, 
y(4)  1, y(4.1)  1.0049, y(4.2)  1.0097 and y(4.3)  1.0143.

5. Given the differential equation dy/dx  x2y  x2 and the data:

x: 1 1.1 1.2  1.3

y: 1 1.233 1.548488 1.978921
determine y(1.4) by any numerical method.
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6. Using the Adams-Bashforth method, evaluate y(1.4); if y satisfies dy/dx 
 y/x  1/x2 and y(1)  1, y(1.1)  0.996, y(1.2)  0.986, y(1.3)  0.972.

10.11 Simultaneous First Order Differential Equations

The simultaneous differential equations of the type

 ( , , )
dy

f x y z
dx
  (1)

and ( , , )
dz

x y z
dx
  (2)

with initial conditions y(x0)  y0 and z(x0)  z0 can be solved by the meth-
ods discussed in the preceding sections, especially Picard’s or Runge-Kutta 
methods.

Picard’s method gives

 

1 0 0 0 1 0 0 0

2 0 1 1 2 0 1 1

3 0 2 2 3 0 2 2

( , , ) , ( , , )

( , , ) , ( , , )

( , , ) , ( , , )

y y f x y z dx z z x y z dx

y y f x y z dx z z x y z dx

y y f x y z dx z z x y z dx

    

    

    

 
 
 

and so on.

(ii) Taylor’s series method is used as follows:

If h be the step-size, y1  y(x0  h) and z1  z(x0  h). Then Taylor’s al-
gorithm for (1) and (2) gives

                  
2 3

1 0 0 0 0'
2! 3!
h h

y y hy y y        (3)

                  
2 3

1 0 0 0 02! 3!
h h

z z hz z z        (4)

Differentiating (1) and (2) successively, we get y, z, etc. So the values 
0 0 0, ,y y y    and 0 0 0, ,z z z   are known. Substituting these in (3) and (4), we 

obtain y1, z1 for the next step.
Similarly, we have the algorithms

 

2 3

2 1 1 1 12! 3!
h h

y y hy y y      
 (5)



464 • NUMERICAL METHODS IN ENGINEERING AND SCIENCE

 
2 3

2 1 1 1 12! 3!
h h

z z hz z z        (6)

Since y1 and z1 are known, we can calculate 1 1, ,y y   and 1 1, ,z z  . Sub-
stituting these in (5) and (6), we get y2 and z2.

Proceeding further, we can calculate the other values of y and z step 
by step.

(iii) Runge-Kutta method is applied as follows:

Starting at (x0, y0, z0) and taking the step-sizes for x, y, z to be h, k, l 
respectively, the Runge-Kutta method gives,

                  1 0 0 0( , , )k hf x y z

                   1 0 0 0( , , )l h x y z 

                  2 0 0 1 0 1
1 1 1

, ,
2 2 2

k hf x h y k z l
 

    
 

                   2 0 0 1 0 1
1 1 1

, ,
2 2 2

l h x h y k z l
 

     
 

                  3 0 0 2 0 2
1 1 1

, ,
2 2 2

k hf x h y k z l
 

    
 

                   3 0 0 2 0 2
1 1 1

, ,
2 2 2

l h x h y k z l
 

     
 

                   4 0 0 3 0 3
1 1 1

, ,
2 2 2

k hf x h y k z l
 

    
 

                   4 0 0 3 0 3
1 1 1

, ,
2 2 2

l h x h y k z l
 

     
 

Hence  1 0 1 2 3 4
1

2 2
6

y y k k k k    

and                    1 0 1 2 3 4
1

2 2
6

z y l l l l    

To compute y2 and z2, we simply replace x0, y0, z0 by x1, y1, z1 in the 
above formulae.

EXAMPLE 10.26

Using Picard’s method, find approximate values of y and z correspond-
ing to x  0.1, given that y(0)  2, z(0)  1 and dy/dx  x  z, dz/dx  x – y2.
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Solution:

Here x0  0, y0  2, z0  1,

and  ( , , )
dy

f x y z x z
dx
  

 2( , , )
dz

x y z x y
dx
  

   
0

0 ( , , )
x

x
y y f x y z dx   and 

0
0 ( , , )

x

x
z z x y z dx  

First approximations

 
0 0

2
1 0 0 0

1
( , , ) 2 ( 1) 2

2

x x

x x
y y f x y z dx x dx x x        

 
0 0

2
1 0 0 0

1
( , , ) 1 ( 4) 1 4

2

x x

x x
z z x y z dx x dx x x         

Second approximations

 
0

2
2 0 1 1 0

1
( , , ) 2 (1 4 )

2

x x

x
y y f x y z dx x x dx      

      
3

23
2

2 6
x

x x   

 
0 0

2
2

2 0 1 1
1

( , , ) 1 2
2

x x

x x
z z x y z dx x x x dx

  
         

  
 

      
4 5

2 33
1 4

2 4 20
x x

x x x     

Third approximations

0

2 3 4 5 6
3 0 2 2

3 1 1 1 1
( , , ) 2

2 2 4 20 120

x

x
y y f x y z dx x x x x x x        

0
3 0 2 2( , , )

x

x
z z x y z dx  

    2 3 4 5 6 73 5 7 31 1 1
1 4

2 3 12 60 12 252
x x x x x x x       

and so on.

When  x  0.1

 y1  2.105,       y2  2.08517, y3  2.08447

 z1  0.605,         z2  0.58397, z3  0.58672.
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Hence y(0.1)  2.0845,  z(0.1)  0.5867

correct to four decimal places.

EXAMPLE 10.27 

Find an approximate series solution of the simultaneous equations dx/
dt  xy  2t, dy/dt  2ty  x subject to the initial conditions x  1, y  – 1,
t  0.

Solution:

x and y both being functions of t, Taylor’s series gives

and 
2 3

0 0 0 0

2 3

0 0 0 0

( )
2! 3!

( )
2! 3!

t t
x t x tx x x

t t
y t y ty y y


       




       





 (i)

Differentiating the given equations

  2x xy t   (ii)

  2y ty x   (iii)
w.r.t. t, we get

 
 

2x xy x y

x xy x y x y x y

    

         
  2 2

2 2 2
y ty y x

y ty y y x

    


        
 (iv)

Putting x0  1, y0  – 1, t0  0 in (ii), (iii), and (iv), we obtain

 

  

    

0

0 0 0 0 0

0

– 1 2 0 –1
 2

1.1 – 1 – 1 2 4

–3 – 1 1 4 –1 – 1 –9

x

x x y x y

x

  

   

   

   

   
   

0

0 0 0

0

1
0 2

2 –1 –1 –3
 2 2 4 8 etc

y

y y x

y

 

   

  

   

Substituting these values in (i), we get

  
2 3

2 33
( ) 1 4 9 1 2

2! 3! 2
t t

x t t t t t           

             
2 3

2 33 4
( ) 1 3 8 1

2! 3! 2 3
t t

x t t t t t          
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EXAMPLE 10.28

Solve the differential equations

 1 ,
dy dz

xz xy
dx dx
   for x  0.3

using the fourth order Runge-Kuta method. Intial values are x  0, 
y  0, z  1.

Solution:

Here  ( ,  ,  ) 1  ,  ( ,  ,  )f x y z xz x y z xy   

              x0  0, y0  0, z0  1. Let us take h  0.3.

        k1  h f (x0, y0, z0)  0.3 f (0, 0, 1)  0.3 (1  0)  0.3.

                   1 0 0 0, , 0.3 –0  0 0( )l h x y z    

 
     

2 0 0 1 0 1
1 1 1

, ,
2 2 2

0.3 0.15,0.15,1 0.3 1 0.15 0.345

k hf x h y k z l

f

 
    

 

   

                  
     

2 0 0 1 0 1
1 1 1

, ,
2 2 2

0.3 0.15 0.15 0.00675

l h x h y k z l
 

     
 

  

                 
   

 

2 2
3 0 0 0

1
, ,

2 2 2
0.3 0.15,0.1725,0.996625

0.3 1 0.996625 0.15 0.34485

k l
k hf x h y z

f

 
    

 



   

                  
   

2 2
3 0 0 0

1
, ,

2 2 2

0.3 0.15 0.1725 0.007762

k l
l h x h y z

 
     

 

  

                 
 
 

4 0 0 3 0 3, ,

0.3 0.3,0.34485,0.99224 0.3893

k hf x h y k z l

f

   

 

                  
 
   

4 0 0 3 0 3, ,

0.3 0.3 0.34485 0.03104

l h x h y k z l    

  

Hence    0 0 1 2 3 4
1

2 2
6

y x h y k k k k     
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i.e.,             1
(0.3) 0 0.3 2(0.345) 2(0.34485) 0.3893 0.34483

6
y      

and           0 1 2 3 4
1

2 2
6

z x h y l l l l     

i.e.               1
(0.3) 1 0 2 0.00675 2(0.0077625) ( 0.03104)

6
0.98999

z       



10.12 Second Order Differential Equations

Consider the second order differential equation

 
2

2
, ,

d y dy
f x y

dx dx

 
  
 

By writing dy/dx  z, it can be reduced to two first order simultaneous 
differential Equations

 , f(x, y, z)
dy dz

z
dx dx


These equations can be solved as explained above.

EXAMPLE 10.29

Find the value of y(1.1) and y(1.2) from y  y2y  x3; y(1)  1, y(1)  
1, using the Taylor series method

Solution:

Let y  z so that y  z

Then the given equation becomes z  y2z  z3

             y  z
                               z x3 – y2z (i)

such that              y(1)  1, z(1)  1, h  0.1. (ii)

Now from (i)      , ,y z y z y z        (iii)

and from (ii)       

 

 
 

3 2 2 2 2

2 2 2

2 2 3

, 3 2

6 ( 2 ) 2

6 ( 2 ) 2 2

z x y z z x y z yz y z

z x y z yy z y z y zz

x y z yz z yzz

        

         

       



 (iv)
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Taylor’s series for y(1.1) is

           
2 3

(1.1) (1) (1) 1 1 ....
2! 3!
h h

y y hy y y      

Also          (1) 1, (1) 1, (1) (1) 0, (1) (1) 1y y y z y z         

       
 

 
 

 
2 30.1 0.1

(1.1) (1) 0.1(1) 0 0 1.1002.
2 6

y     

Taylor’s series for z(1.1) is

           
2 3

(1.1) (1) (1) 1 1 ....
2! 3!
h h

z z hz z z      

Here          (1) 1, (1) 0, (1) 1, (1) 3z z z z     

       
 

 
 

 
2 30.1 0.1

(1.1) (1) 0.1(0) 1 3 1.0055
2 6

z     

Hence y(1.1)  1.1002 and z(1.1)  1.0055.

EXAMPLE 10.30

Using the Runge-Kutta method, solve y  xy2 – y2 for x  0.2 correct 
to 4 decimal places. Initial conditions are x  0, y  1, y  0.

Solution:

Let dy/dx  z  f(x, y, z)

Then 2 2– ( , , )
dy

xz y x y z
dx
 

We have x0  0, y0  1, z0  0, h  0.2

 Runge-Kutta formulae become

k1  hf(x0, y0, z0)  0.2(0)  0

 
 

2 0 1 0 1
1 1 1

, ,
2 2 2

0.2 – 0.1 – 0.02

ok hf x h y k z l
 

    
 

 

 
 

3 0 2 0 2
1 1 1

, ,
2 2 2

0.2 – 0.0999 –0.02

ok hf x h y k z l

 

 
    

 

 
 
 

4 0 3 0 3

0.2 – 0.1958 – 0 92

,

0. 3

,ok hf x h y k z l 
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  1 2 3 4
1

2 2 0.0199
6

k k k k k    

l1  hf(x0, y0, z0)  0.2(– 1)  – 0.2

 2 0 0 1 0 1
1 1 1

, ,
2 2 2

0.2( 0.999) 0.1998

l h x h y k z l
 

     
 

  

 
 

3 0 0 2 0 2
1 1 1

, ,

0.2 – 
2 2 2

0.9791 –0.1958

l h x h y k z l
 

    

 


 

 
 
 

4 0 0 3 0 3, ,

0.2 0.9527 –0.1905

l h x h y k z l

 

    

  1 2 3 4
1

2 2 0.1970
6

l l l l l    

Hence at x  0.2,

                           y  y0  k  1 – 0.0199  0.9801

and               y  z  z0  l  0 – 0.1970  – 0.1970.

EXAMPLE 10.31

Given y  xy  y  0, y(0)  1, y(0)  0, obtain y for x  0(0.1) 0.3 by 
any method. Further, continue the solution by Milne’s method to calculate 
y(0.4).

Solution:

Putting y  z, the given equation reduces to the simultaneous equa-
tions

 z  xz  y  0, y  z (1)
We employ Taylor’s series method to find y.

Differentiating the given equation n times, we get

 yn2  xn+1 nyn  yn  0

At x  0, (yn2)0  – (n  1)(yn)0

  y(0)  1, gives y2(0)  – 1, y4(0)  3, y6(0)  – 5 × 3, ...... 

and y1(0)  0 yields y3(0)  y5(0)  ......  0.



NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS • 471

Expanding y(x) by Taylor’s series, we have

       
2 3

1 2 3( ) (0) (0) (0) (0)
2! 3!
x x

y x y xy y y    

                   
2

4 63 5 3
( ) 1

2! 4! 6!
x

y x x x


      (2)

and 3 51 1
( ) ( ) ,

2 8
z x y x x x x xy       (3)

From (2), we have

     
 

 

 
   

 
     

2
4

2 4

2 4 6

0.1 1
0.1 1 0.1 0.995

2 8
0.2 0.2

0.2 1 0.9802
2 8

0.3 0.3 0.3
0.3 1 0.956

2 8 48

y

y

y

    

    

    







From (3), we have 

    z(0.1)  – 0.0995, z(0.2)  – 0.196, z(0.3)  – 0.2863.

Also from (1), z(x)  – (xz  y)

 z(0.1)  0.985, z(0.2)  – 0.941, z(0.3)  – 0.87. 

Applying Milne’s predictor formula, first to z and then to y, we obtain

             

 

4
3

0.4
0

3

0.4 0 0.1 2 0.1 – 0.2 2 0.3

– 1.79  0.941 – 1.74 –0.3692

z z z z z



     

 


  
 

and              

 

4
3

0.4
3

0.4 0 0.1 2 0.1 – 0.2 2 0.3

0 – 0.199 0.196 – 0.5736 0.9231

y y y y y



     

   


 
 

 [ y  z]

Also z(0.4)  – {x(0.4) z(0.4)  y(0.4)}

 – {0.4(– 0.3692)  0.9231}  – 0.7754.

Now applying Milne’s corrector formula, we get

           

 

0.4 0.2 0.2 4 0.3 0.4

–0.196 –0.941 – 3.48 – 0.7754 –0.3692

3
0.1
3

z z z z z
h
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and           

 

0.4 0.2 0.2 4 0.3 0.4
3

0.9802 –0.196 – 1.1452 – 0.3692 0.923
0

2
.1
3

h
y y y y y      

  
 
 
 

Hence y(0.4)  0.9232 and z(0.4)  – 0.3692.

Exercises 10.6

1. Apply Picard’s method to find the third approximations to the values of y 
and z, given that 

dy/dx  z, dz/dx  x3(y  z), given y  1, z  1/2 when x  0.

2. Using Taylor’s series method, find the values of x and y for t  0.4, 
satisfying the differential equations
dx/dt  x  y  t, d2y/dt2  x – t with initial conditions x  0, y  1, 
dy/dt  – 1 at t  0.

3. Solve the following simultaneous differential equations, using Taylor 
series method of the fourth order, for x  0.1 and 0.2:

  1; ; 0 1.
dy dz

xz xy y
dx dy
   

4. Find y(0.1), z(0.1), y(0.2), and z(0.2) from the system of equations: y 
x  z, z  x – y2 given y(0)  0, z(0)  1 using Runge-Kutta method of the 
fourth order.

5. Using Picard’s method, obtain the second approximation to the solution 
of

  
2

3 3
2

d y dy
x x y

dxdx
   so that    

1
0 1. 0 .

2
y y 

6. Use Picard’s method to approximate y when x  0.1, given that
2

2

2
2 2 0

2
d y d y dy

x x y
dx dxdx

    and 0.5,
0.1

dy
y

dx



 when x  0.

7. Find y(0.2) from the differential equation y  3xy – 6y  0 where y(0) 
 1, y(0)  0.1, using the Taylor series method.

8. Using the Runge-Kutta method of the fourth, solve y  y  xy, y(0)  1, 
y(0)  0 to find y(0.2) and y(0.2).
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9. Consider the second order initial value problem y – 2y  2y  e2t sin t 
with y(0)  – 0.4 and y(0)  – 0.6. Using the fourth order Runga-Kutta 
method, find y(0.2).

10. The angular displacement  of a simple pendulum is given by the equa-
tion

 
2

2 sin 0
1
gd

dt

 

where l  98 cm and g  980 cm/sec2. If   0 and d/dt  4.472 at t  0, 
use the Runge-Kutta method to find  and d/dt when t  0.2 sec.

11. In a L-R-C circuit the voltage v(t) across the capacitor is given by the 
equation 

 
2

2 0
d v dv

LC RC v
dtdt

  

subject to the conditions t  0, v  v0, dv/dt  0.
Taking h  0.02 sec, use the Runge-Kutta method to calculate v and 
dv/dt when t  0.02, for the data v0  10 volts, C  0.1 farad, L  0.5 henry 
and R  10 ohms.

10.13 Error Analysis

The numerical solutions of differential equations certainly differ from 
their exact solutions. The difference between the computed value yi and the 
true value y(xi) at any stage is known as the total error. The total error at 
any stage is comprised of truncation error and round-off error.

The most important aspect of numerical methods is to minimize the 
errors and obtain the solutions with the least errors. It is usually not pos-
sible to follow error development quite closely. We can make only rough 
estimates. That is why, our treatment of error analysis at times, has to be 
somewhat intuitive.

In any method, the truncation error can be reduced by taking smaller 
sub-intervals. The round-off error cannot be controlled easily unless the 
computer used has the double precision arithmetic facility. In fact, this er-
ror has proved to be more elusive than the truncation error.

The truncation error in Euler’s method is 21
,

2
h yn  i.e., of (h2) while 

that of modified Euler’s method is 31
,

2 nh y  .i.e., of (h3)
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Similarly in the fourth order of the Runge-Kutta method, the trunca-
tion error is of O(h5).

In the Milne’s method, the truncation error

due to predictor formula 514
45

v
ny h

and due to corrector formula 51
90

v
ny h .

i.e., the truncation error in Milne’s method is also of O(h5).

Similarly the error in the Adams-Bashforth method is of the fifth order. 
Also the predictor error TP and the corrector error Tc are so related that 
19TP  – 251 Tc.

The relative error of an approximate solution is the ratio of the total 
error to the exact value. It is of greater importance than the error itself for 
if the true value becomes larger, then a larger error may be acceptable. If 
the true value diminishes, then the error must also diminish otherwise the 
computed results may be absurd.

EXAMPLE 10.32

Does applying Euler’s method to the differential equation

dy/dx  f(x, y), y(x0)  y0, estimate the total error?

When f(x, y)  – y, y(0)  1, compute this error neglecting the round-off 
error.

Solution:

We know that Euler’s solution of the given differential equation is

 yn+1  yn  hf(xn, yn) where xn  x0  nh.

i.e.,           yn+1  yn  hyn (1)
Denoting the exact solution of the given equation at x  xn by y(xn) and 

expanding y(xn1) by Taylor’s series, we obtain

  
2

1( ) ( ) ( ) , , 1
2!n n n n n n n
h

y x y x hy x y x x          (2)

 The truncation error Tn1  y(xn1) – yn1  (1/2)h2 y  (n)

Thus the truncation error is of O(h2) as h  0.
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To include the effect of round-off error Rn, we introduce a new ap-
proximation yn which is defined by the same procedure allowing for the 
round-off error.

  1 1,n n n n ny y hf x y R     (3)
 The total error is defined by

1 1 1( ) –n n nyE y x  
 [(2) – (3)]

             
   

2

1

1 1

( ) ( ) ( , )
2!

( ) ( ) ( , )

n n n n n nn

n n n n n nn

h
y x hy x y y hf x y R

y x y h h x f x y T R



 

       

          
 (4)

Assuming continuity of f/y and using Mean-Value theorem, we have

f[xn, y(xn)] – f(xn, yn)  [y(xn) – yn] fy(xn, n ), where n lies between y(xn) 
and yn.

 (4) takes the form

                     1 1 1( ) – 1 [ ,  nn n y n n n nE y x hf x T Ry       

or En1  En [1  hfy(xn, n )]  Tn1  Rn+1 (5)

This is the recurrence formula for finding the total error. The first terms 
on the right-hand side is the inherited error, i.e., the propagation of the er-
ror from the previous step yn to yn1.

(b) We have dy/dx  – y, y(0)  1.

Taking h  0.01 and applying (1) successively, we obtain

 y(0.01)  1  0.01(– 1)  0.99

 y(0.02)  0.99  0.01 (– 0.99)  0.9801

 y(0.03)  0.9703, y(0.04)  0.9606

 The truncation error

Tn1  (1/2)h2y( )  0.00005y )  5 × 10–5 y(xn) [ dy/dx is – ve]

i.e.,               T1  5 × 10–5 y(0)  5 × 10–5

 T2  5 × 10–5 y(0.01)  5 × 10–5 (0.99) < 5 × 10–5

 T3  5 × 10–5 y(0.02)  5 × 10–5 (0.9801) < 5 × 10–5

 T4  5 ×10–5 y(0.03)  5 × 10–5 (0.9703) < 5 × 10–5 etc.
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Also 1  hf0(xn, yn)  1  0.01(– 1)  0.99.

Neglecting the round-off error and using the above results, (5) gives

 E0  0, E1  E0(0.99)  T1  5 × 10–5  0.00005

 E2  E1(0.99)  T2 < 5 × 10–5  5 × 10–5  0.0001

 E3  E2(0.99)  T3 < 10–4  5 × 10–5  0.00015

 E4  E3(0.99)  T4 < 1.5 × 10–4  5 × 10–5  0.0002 etc.

Obs. The exact solution is y  e–x.
 Actual error in y(0.03)  e–0.03 – 0.9703  0.00014
and  actual error in y(0.04)  e–0.04 – 0.9606  0.00019.

 Clearly the total error E4 agrees with the actual error in y(0.04).

10.14 Convergence of a Method

Any numerical method for solving a differential equation is said to be 
convergent if the approximate solution yn approaches the exact solution 
y(xn) as h tends to zero provided the rounding errors arise from the initial 
conditions approach zero. This means that as a method is continually re-
fined by taking smaller and smaller step-sizes, the sequence of approximate 
solutions must converge to the exact solution.

Taylor’s series method is convergent provided f(x, y) possesses enough 
continuous derivatives. The Runge-Kutta methods are also convergent un-
der similar conditions. Predictor corrector methods are convergent if f(x, y) 
satisfies the Lipschitz condition, i.e.,

 ( , ) – ,  | ( ) |– , f x y f x y k y y  
k being a constant, then the sequence of approximations to the numeri-

cal solution converges to the exact solution.

10.15 Stability Analysis

There is a limit to which the step-size h can be reduced for controlling 
the truncation error, beyond which a further reduction in h will result in 
the increase of round-off error and hence increase in the total error. This 
behavior of the error bound is shown in Figure 10.3.

In such situations, we have to use stable methods so that an error intro-
duced at any stage does not get magnified.

NOTE
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A method is said to be stable if it produces a bounded solution which 
imitates the exact solution. Otherwise it is said to be unstable. If a method 
is stable for all values of the parameter, it is said to be absolutely or uncon-
ditionally stable. If it is stable for some values of the parameter, it is said to 
be conditionally stable.

The Taylor’s method and Adams-Bashforth method prove to be rela-
tively stable. Euler’s method and the Runge-Kutta method are condition-
ally stable as will be seen from Example 10.23.

The Milne’s method is however, unstable since when the parameter is 
negative, each of the errors is magnified while the exact solution decays.

Total
erro

r

Truncat
ion err

or

Round-off error

Optimum, h

E
rr

or

FIGURE 10.3

EXAMPLE 10.33

Does applying Euler’s method to the equation

dy/dx  y, given y(x0)  y0,

determine its stability zone? What would be the range of stability when 
 – 1?

Solution:

We have y  y, y(x0)  y0 (1)

By Euler’s method,

   yn  yn–1  hyn–1  yn–1  hyn–1  (1  h)yn–1 [by (1)
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 yn–1  (1  h) yn–2

             ....................................... 

               y2  (1  h) y1

               y1  (1  h) y0

Multiplying all these equations, we obtain

                   yn  (1 h)n y0 (2)
Integrating (1), we get y  cex

Using y(x0)  y0, y0  cex0    y  y0e
l(x–x0)

In particular, the exact solution through (xn, yn) is

     0
0 0

xn x nh
ny y e y e     [ xn  x0  nh]

or 
 2

0 0( ) 1
2

n

h n
n

h
y y e y h

 
     

 
  (3)

– 2

Im(λh)

Re(λh)

Unstable

Stable

– 1

FIGURE 10.4

Clearly the numerical solution (2) agrees with exact solution (3) for 
small values of h. The solution (2) increases if |1  h| > 1.

Hence |1  h|< 1 defines a stable zone.

When  is real, then the method is stable if |1  h| < 1 i.e. – 2 < h < 0

When  is complex (  a  ib), then it is stable if

|1  (a  ib) h | < 1 i.e. (1  ah)2  (bh)2 < 1

i.e., (x  1)2  y2 < 1, [where x  ah, y  bh.]
i.e., h lies within the unit circle shown in Figure 10.4.

When  is imaginary ( ib), |1  h|  1, then we have a periodic-stability.
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Hence Euler’s method is absolutely stable if and only if

(i) real : – 2 < h  0.

(ii) complex : h lies within the unit circle (Figure 10.4), i.e., Euler’s 
method is conditionally convergent.

When   – 1, the solution is stable in the range – 2 < – h < 0 
i.e. 0 < h < 2.

Exercises 10.7

1. Show that the approximate values yi, obtained from y  y with y(0)  1 
by Taylor’s series method, converge to the exact solution for h tending to 
zero.

2. Show that the modified Euler’s method is convergent.

3. Starting with the equation y  y, show that the modified Euler’s 
method is relatively stable.

4. Apply the fourth order Runge-Kutta method to the equation dy/dx  y, 
y(x0)  y0 and show that the range of absolute stability is
   – 2.78 < h < 0.

5. Find the range of absolute stability of the equation
y  10y  0, y(0)  1, using

(a) Euler’s method, (b) Runge-Kutta method.

6. Show that the local truncation errors in the Milne’s predictor and cor-
rector formulae are

514
45

uh y and 51
,

90
uh y respectively.

10.16 Boundary Value Problems

Such a problem requires the solution of a differential equation in a 
region R subject to the various conditions on the boundary of R. Practical 
applications give rise to many such problems. We shall discuss two-point 
linear boundary value problems of the following types:

 (i)       
2

2

d y dy
x x y x

dxdx
      with the conditions y(x0)  a, 
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y(xn)  b.

(ii)     
4

4

d y
x y x

dx
    with the conditions y(x0)  y(x0)  a and 

y(xn)  y(xn)  b.

There exist two numerical methods for solving such boundary value 
problems. The first one is known as the finite difference method which 
makes use of finite difference equivalents of derivatives. The second one is 
called the shooting method which makes use of the techniques for solving 
initial value problems.

10.17 Finite-Difference Method

In this method, the derivatives appearing in the differential equation 
and the boundary conditions are replaced by their finite-difference ap-
proximations and the resulting linear system of equations are solved by any 
standard procedure. These roots are the values of the required solution at 
the pivotal points.

The finite-difference approximations to the various derivatives are 
derived as under:

If y(x) and its derivatives are single-valued continuous functions of x 
then by Taylor’s expansion, we have

          
2 3

2! 3!
h h

y x h y x hy x y x y x         (1)

and          
2 3

2! 3!
h h

y x h y x hy x y x y x         (2)
Equation (1) gives

        
1

2
h

y x y x h y x y x
h
        

i.e.,                          
1

( )y x y x h y x O h
h
      

which is the forward difference approximation of y(x) with an error of the 
order h.

Similarly (2) gives

      
1

( )y x y x y x h O h
h
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which is the backward difference approximation of y(x) with an error of 
the order h.

Subtracting (2) from (1), we obtain

     21
( )

2
– – ( )y y x h yx x

h
h O h     

which is the central-difference approximation of y(x) with an error of the 
order h2. Clearly this central difference approximation to y(x) is better than 
the forward or backward difference approximations and hence should be 
preferred.

Adding (1) and (2), we get

            
2

21
( ) ( )– 2 ( – ) ( )y y x h y y x

h
h O hx x      

which is the central difference approximation of y(x). Similarly we can de-
rive central difference approximations to higher derivatives.

Hence the working expressions for the central difference approxima-
tions to the first four derivatives of yi are as under:

                            
1 –1

1
–( )

2i i ih
y y y   (3)

                              1 –12 2
1

–i i i iy y y y
h     (4)

  2 1 –13 –2 – 2 –
1

2
2i i i i ih

y y y y y      (5)

          24 1 –1 –2– 4 6 – 4
1iv

i i i i i iy y y y y y
h       (6)

Obs. The accuracy of this method depends on the size of the 
sub-interval h and also on the order of approximation. As we 
reduce h, the accuracy improves but the number of equations to 
be solved also increases.

EXAMPLE 10.34

Solve the equation y  x  y with the boundary conditions y(0)  
y(1)  0.

Solution:

We divide the interval (0, 1) into four sub-intervals so that h  1/4 and 
the pivot points are at x0  0, x1  1/4, x2  1/2, x3  3/4, and x4  1.

NOTE
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Then the differential equation is approximated as

 1 12 –– 2
1

i i i i ih
y y y x y
     

or 16yi1 – 33yi  16i–1  xi, i  1, 2, 3.

Using y0  y4  0, we get the system of equations

2 1 3 2 1 3 2
1 3

16 – 33 16 – 33 16 ;– 33 16
2 4

1
;

4
y y y y y y y    

Their solution gives

y1  – 0.03488, y2  – 0.05632, y3  – 0.05003.

Obs. The exact solution being 
sinh

( ) ,
sinh1

x
y x x   the error at 

each nodal point is given in the table below:

x Computed value y(x) Exact value y(x) Error
0.25 – 0.03488 – 0.03505 0.00017
0.5 – 0.05632 – 0.05659 0.00027
0.75 – 0.05003 – 0.05028 0.00025

EXAMPLE 10.35

Using the finite difference method, find y(0.25), y(0.5), and y(0.75) sat-

isfying the differential equation 
2

2 ,
d y

y x
dx
   subject to the boundary condi-

tions y(0)  0, y(1)  2.

Solution:

Dividing the interval (0, 1) into four sub-intervals so that h  0.25 and 
the pivot points are at x0  0, x1  0.25, x2  0.5, x3  0.75, and x4  1.

The given equation y(x)  y(x)  x, is approximated as

 1 12 –– 2
1

i i i i ih
y y y y x
   

or  16yi1 – 31yi  16yi–1  xi  (i)

Using y0  0 and y4  2, (i) gives the system of equation,

  (i  1) 16y2 – 31y1  0.25; (ii)

  (i  2) 16y3 – 31y2  16y1  0.5 (iii)

  (i  3) 32 – 31y3  16y2  0.75, i.e., – 31y3  16y2  – 31.25  (iv)

NOTE
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Solving the equations (ii), (iii), and (iv), we get
 y1  0.5443, y2  1.0701, y3  1.5604

Hence y (0.25)  0.5443, y(0.5)  1.0701, y(0.75)  1.5604

EXAMPLE 10.36

Determine values of y at the pivotal points of the interval (0, 1) if y 
satisfies the boundary value problem yiv  81y  81x2, y(0)  y(1)  y(0)  
y (1)  0. (Take n  3).

Solution:

Here h  1/3 and the pivotal points are x0  0, x1  1/3, x2  2/3, x3  1. 
The corresponding y-values are y0( 0), y1, y2, y3( 0).

Replacing yiv by its central difference approximation, the differential 
equation becomes

   2
2 1 –1 –24 – 4 6

1
– 4 81 81i i i i i i iy y y y y y x

h      

or yi2 – 4yi1  7yi – 4yi–1  yi–2  xi
2, i  1, 2

At        i  1, y3 – 4y2  7y1 – 4y0  y–1  1/9

At           i  2, y4 – 4y3  7y2 – 4y1  y0  4/9

Using y0  y3  0, we get – 4y2  7y1  y–1  1/9  (i)

                           y4  7y2 – 4y1  4/9 (ii)
Regarding the conditions y0  y3  0, we know that

                       12 –1
1

( – )2i i iyi y y y
h  

At i  0,   y0  9 (y1 – 2y0  y–1) or y–1  – y1 [ y0  y0  0] (iii)

At i  3,          y3  9(y4 – 2y3  y2) or y4  – y2 [ y3  y3  0] (iv)
Using (iii), the equation (i) becomes

          – 4y2  6y1  1/9  (v)
Using (iv), the equation (ii) reduces to

              6y2 – 4y1  4/9 (vi)
Solving (v) and (vi), we obtain
         y1  11/90 and y2  7/45.

Hence y(1/3)  0.1222 and y(2/3)  0.1556.
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EXAMPLE 10.37

The deflection of a beam is governed by the equation 
4

4 81 ( ),
d y

y x
dx
   

where f(x) is given by the table

x 1/3 2/3 1
(x) 81 162 243

and boundary condition y(0)  y(0)  y(1)  y(1)  0. Evaluate the de-
flection at the pivotal points of the beam using three sub-intervals. 

Solution:

Here h  1/3 and the pivotal points are x0  0, x1  1/3, x2  2/3, x3  1. 
The corresponding y-values are y0( 0), y1, y2, y3.

The given differential equation is approximated to

    2 1 –1 –4 2– 4 6 – 4
1

81i i i i i i iy y y y y y x
h      

At i  1, y3 – 4y2  7y1 – 4y0  y–1  1 (i)

At i  2,    y4 – 4y3  7y2 – 4y1  y0  2 (ii)

At i  3,    y5 – 4y4  7y3 – 4y2  y1  3 (iii)

We have     y0  0 (iv)

Since                                       1 –1–
1

2 i iyi
h

y y  

 for i  0,             0 1 10 – – 1 i.e., – 1
1

2
y

h
y y y y     (v)

Since              12 –1–  2
1

i i iyi y y
h

y   

 for i  3,               2 4 3 223 4 30 – 2 , i.e.,  2 –
1

y y y y y y
h

y      (vi)

Also               2 1 –13 –2 – 2 –
1

2
2i i i i ih

y y y y y     

 for i  3,  3 5 43 2 1
1

 – –
2

0 2 2y y y y y
h

    

i.e.,                          y5  2y4 – 2y2  y1 (vii)
Using (iv) and (v), the equation (i) reduces to

 y3 – 4y2  8y1  1 (viii)
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Using (iv) and (vi), the equation (ii) becomes

 – y3  3y2 – 2y1  1 (ix)
Using (vi) and (vii), the equation (iii) reduces to

 3y3 – 4y2  2y1  3 (x)
Solving (viii), (ix), and (x), we get

 y1  8/13, y2  22/13, y3  37/13.

Hence y(1/3)  0.6154, y(2/3)  1.6923, y(1)  2.8462.

10.18 Shooting Method

In this method, the given boundary value problem is first transformed 
to an initial value problem. Then this initial value problem is solved by Tay-
lor’s series method or Runge-Kutta method, etc. Finally the given bound-
ary value problem is solved. The approach in this method is quite simple.

Consider the boundary value problem

 y(x)  y(x), y(x)  A, y(b)  B (1)
One condition is y(a)  A and let us assume that y(a)  m which rep-

resents the slope. We start with two initial guesses for m, then find the cor-
responding value of y(b) using any initial value method.

Let the two guesses be m0, m1 so that the corresponding values of y(b) 
are y(m0, b) and y(m1, b). Assuming that the values of m and y(b) are lin-
early related, we obtain a better approximation m2 for m from the relation:

        
1 02 1

1 1 0, , ,
m mm m

y b y m b y m b y m b



 

This gives         
   

   2 1 1 0
1 0, ,

y m b y b
m m m m

y m b y m b
    (2)

We now solve the initial value problem

       y(x)  y(x), y(a)  A, y(a)  m2

and obtain the solution y(m2, b).

To obtain a better approximation m3 for m, we again use the linear rela-
tion (2) with [m1, y(m1, b)] and [m2, y(m2, b)]. This process is repeated until 
the value of y(mi, b) agrees with y(b) to desired accuracy.
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y(x)

0 x0 = a x1 x2 x3 xi = b 
x

(y′(a) = m0)

B1 = y(m1,b)

B2 = y(m2,b)

2B=y(b)

B0 =y(ma,b)

A

D
i re

cti
on of s hootin g

(y′(a) = m1)

FIGURE 10.5

Obs. This method resembles an artillery problem and as such 
is called the shooting method (Figure 10.5). The speed of 
convergence in this method depends on our initial choice of 
two guesses for m. However, the shooting method is quite slow 
in practice. Also this method is quite tedius to apply to higher 
order boundary value problems.

EXAMPLE 10.38

Using the shooting method, solve the boundary value problem:

 y(x)  y(x), y(0)  0 and y(1)  1.17.
Solution:

Let the initial guesses for y(0)  m be m0  0.8 and m1  0.9. 
Then y(x)  y(x), y(0)  0 gives

   y(0)  m  y(0)  y(0)  0

 y(0)  y(0)  m,  yiv(0)  y(0)  0

        yv(0)  y(0)  m, yvi(0)  yiv(0)  0

and so on.

Putting these values in the Taylor’s series, we have

 

       
2 3

3 5 7

( ) 0 0 0 0
2! 3!

6 120 5040

x x
y x y xy y y

x x x
m x

      

 
     
 





NOTE
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 y(1)  m(1  0.1667  0.0083  0.0002  )  m (1.175)

For m0  0.8, y(m0, 1)  0.8 × 1.175  0.94

For m1  0.9, y(m1, 1)  0.9 × 1.175  1.057

Hence a better approximation for m, i.e., m2 is given by

        
 

   

   
1

2 1 1 0
1 0

,1 1

,1 ,1

y m y
m m m m

y m y m


  



  
1.057 1.175

0.9 0.1 0.9 0.10085 1.00085
1.057 0.94


    



which is closer to the exact value of y(0)  0.996 

We now solve the initial value problem

 y(x)  y(x), y(0)  0, y(0)  m2.
Taylor’s series solution is given by

 y(m2, 1)  m2 (1.175)  1.1759
Hence the solution at x  1 is y  1.176 which is close to the exact value 

of y(1)  1.17.

Exercises 10.8

1. Solve the boundary value problem for x  0.5:

                       
2

2 1 0, 0 1 0.
d y

y y y
dx
      (Take n  4)

2. Find an approximate solution of the boundary value problem:

y  8(sin2 y) y  0, 0  x  1, y(0)  y(1)  1. (Take n  4)

3. Solve the boundary value problem:

xy  y  0, y(1)  1, y(2)  2. (Take n  4)

4. Solve the equation y – 4y  4y  e3x, with the conditions y(0)  0, 
y(1)  – 2, taking n  4.

5. Solve the boundary value problem y – 64y  10  0 with y(0)  y(1)  0 
by the finite difference method. Compute the value of y(0.5) and com-
pare with the true value.
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6. Solve the boundary value problem
  y  xy  y  3x2  2, y(0)  0, y(1)  1.

7. The boundary value problem governing the deflection of a beam of 
length three meters is given by

        
4

2
4

1 2
2 4, 0 0 3 3 0.

9 3
d y

y x x y y y y
dx

        

The beam is built-in at the left end (x  0) and simply supported at the 
right end (x  3).
Determine y at the pivotal points x  1 and x  2.

8. Solve the boundary value problem,

        
4

2
4 81 729 0 0 1 1 0. Use 3

d y
y x y y y y n

dx
        

9. Solve the equation yiv – y  y  x2, subject to the boundary conditions

y(0)  y(0)  0 and y(1)  2, y(1)  0. (Take n  5).

10. Apply shooting method to solve the boundary value problem 

    
2

, 0 0 and y 1 1.1752.
2

d y
y y

dx
  

11. Using shooting method, solve the boundary value problem

    
2

26 , 0 1, 0.5 0.44
2

d y
y y y

dx
  

10.19 Objective Type of Questions

Exercises 10.9

Select the correct answer or fill up the blanks in the following questions:

1. Which of the following is a step by step method:
(a) Taylor’s  (b) Adams-Bashforth
(c) Picard’s  (d) None.

2. The finite difference scheme for the equation 2y  y  5 is ...... .

3. If y  x  y, y(0)  1 and y(1)  1  x  x2/2, then by Picard’s method, the 
value of y(2)(x) is ......
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4. The iterative formula of Euler’s method for solving y  f(x, y) with 
y(x0)  y0, is ....... .

5. Taylor’s series for solution of first order ordinary differential equations 
is ......... .

6. The disadvantage of Picard’s method is ...... .

7. Given y0, y1, y2, y3, Milne’s corrector formula to find y4 for dy/dx 
 f(x, y), is ...... .

8. The second order Runge-Kutta formula is ...... .

9. Adams-Bashforth predictor formula to solve y  f(x, y), given y0  y(x0) 
is .... .

10. The Runge-Kutta method is better than Taylor’s series method because 
...... .

11. To predict Adam’s method atleast ...... values of y, prior to the desired 
value, are required.

12. Taylor’s series solution of y – xy  0, y(0)  1 upto x4 is ...... .

13. If dy/dx is a function of x alone, the fourth order Runge-Kutta method 
reduces to ....... 

14. Milne’s Predictor formula is ....... .

15. Adam’s Corrector formula is ....... .

16. Using Euler’s method, dy/dx  (y – 2x)/y, y(0)  1; gives y (0.1)  ..... .

17. 
2

2
2 0

d y dy
y y

dxdx
    is equivalent to a set of two first order differential 

equations ...... and ...... .

18. The formula for the fourth order Runge-Kutta method is ...... .

19. Taylor’s series method will be useful to give some ...... of Milne’s 
method.

20. The names of two self-starting methods to solve y  f(x, y) given 
y(x0)  y0 are ...... .

21. In the derivation of the fourth order Runge-Kutta formula, it is called 
fourth order because ..... 
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22. If y  x – y, y(0)  1 then by Picard’s method, the value of y(1) (1) is ...... .
(a) 0.915  (b) 0.905 (c) 1.091 (d) none.

23. The finite difference formulae for y(x) and y(x) are ...... . 

24. If y  – y, y(0)  1, then by Euler’s method, the value of y(1) is
(a) 0.99  (b) 0.999 (c) 0.981 (d) none.

25. Write down the difference between initial value problem and boundary 
value problem ..... . 

26. Which of the following methods is the best for solving initial value prob-
lems:
(a) Taylor’s series method 
(b) Euler’s method
(c) Runge-Kutta method of the fourth order
(d) Modified Euler’s method. 

27. The finite difference scheme of the differential equation y  2y  0 is 
.....

28. Using the modified Euler’s method, the value of y(0.1) for

 , 0 1
dy

x y y
dx
    is

(a) 0.809  (b) 0.909 (c) 0.0809 (c) none.

29. The multi-step methods available for solving ordinary differential equa-
tions are ...... .

30. Using the Runge Kutta method, the value of y(0.1) for y  x – 2y, y(0)  
1, taking h  0.1, is ...... 
(a) 0.813  (b) 0.825 (c) 0.0825 (c) none.

31. In Euler’s method, if h is small the method is too slow, if h is large, it 
gives inaccurate value. (True or False)

32. Runge-Kutta method is a self-starting method. (True or False)

33. Predictor-corrector methods are self-starting methods. (True or False) 


